Browse > Article
http://dx.doi.org/10.12989/scs.2016.21.5.1085

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE  

Kumar, Dinesh (Mechanical Engineering Department, Malaviya National Institute of Technology)
Srivastava, Ashish (Mechanical Engineering Department, Malaviya National Institute of Technology)
Publication Information
Steel and Composite Structures / v.21, no.5, 2016 , pp. 1085-1103 More about this Journal
Abstract
The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).
Keywords
carbon nanotubes (CNT); graphene; representative volume element (RVE), nanocomposites; homogenization; elastic properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Al-Ostaz, A., Pal, G., Mantena, P.R. and Cheng, A. (2008), "Molecular dynamics simulation of SWCNT-polymer nanocomposite and its constituents", J. Mater. Sci., 43(1), 164-173.   DOI
2 Arash, B., Park, H.S. and Rabczuk, T. (2015), "Tensile fracture behavior of short carbon nanotube reinforced polymer composites: A coarse-grained model", Compos. Struct., 134, 981-988.   DOI
3 Arash, B., Park, H.S. and Rabczuk, T. (2016), "Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites", Carbon, 96, 1084-1092.   DOI
4 Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., Int. J., 2(4), 199-210.   DOI
5 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37.   DOI
6 Bower, C., Rosen, R., Jin, L., Han, J. and Zhou, O. (1999), "Deformation of carbon nanotubes in nanotube-polymer composites", Appl. Phys. Lett., 74(22), 3317-3319.   DOI
7 Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K. and Ni, Z. (2009), "Atomistic simulations of mechanical properties of graphene nanoribbons", Phys. Lett. A, 373(37), 3359-3362.   DOI
8 Chen, X.L. and Liu, Y.J. (2004), "Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites", Comput. Mater. Sci., 29(1), 1-11.   DOI
9 Cho, J. and Sun, C.T. (2007), "A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites", Comput. Mater. Sci., 41(4), 54-62.   DOI
10 Coleman, J.N., Khan, U., Blau, W.J. and Gun‟ko, Y.K. (2006), "Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652.   DOI
11 Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nature, 6(3), 183-191.   DOI
12 Ghasemi, H., Rafiee, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2014), "Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multiscale modeling", Comput. Mater. Sci., 85, 295-305.   DOI
13 Ghasemi, H., Brighenti, R., Zhuang, X., Muthu, J. and Rabczuk, T. (2015), "Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach", Struct. Multidiscip. Optim., 51(1), 99-112.   DOI
14 Halpin, J.C. (1969), "Effects of environmental factors on composite materials", Technical Report; Air Force Mater. Lab Wright-Patterson AFB OH.
15 Joshi, U.A., Sharma, S.C. and Harsha, S.P. (2011), "Analysis of elastic properties of carbon nanotube reinforced nanocomposites with pinhole defects", Comput. Mater. Sci., 50(11), 3245-3256.   DOI
16 Hyer, M.W. (1998), Stress Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, Boston, MA, USA.
17 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58.   DOI
18 Joshi, P. and Upadhyay, S.H. (2014), "Evaluation of elastic properties of multi walled carbon nanotube reinforced composite", Comput. Mater. Sci., 81, 332-338.   DOI
19 Kim, H. and Macosko, C.W. (2009), "Processing-property relationships of polycarbonate/graphene composites", Polymer, 50(15), 3797-3809.   DOI
20 Kondo, D., Sato, S. and Awano, Y. (2008), "Self-organization of novel carbon composite structure: Graphene multi-layers combined perpendicularly with aligned carbon nanotubes", Appl. Phys. Express., 1(7), 0740031-0740033.
21 Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. and Lee, J.H. (2010), "Recent advances in graphene based polymer composites", Prog. Polym. Sci., 35(11), 1350-1375.   DOI
22 Laurent, C., Flahaut, E. and Peigney, A. (2010), "The weight and density of carbon nanotubes versus the number of walls and diameter", Carbon, 48(10), 2994-2996.   DOI
23 Li, C. and Chou, T.-W. (2009), "Failure of carbon nanotube/polymer composites and the effect of nanotube waviness", Compos. Part A: Appl. Sci. Manuf., 40(10), 1580-1586.   DOI
24 Liu, Y.J. and Chen, X.L. (2003a), "Continuum models of carbon nanotube-based composites using the boundary element method", Electron. J. Bound. Elem., 1(2), 316-335.
25 Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76(20), 2868-2870.   DOI
26 Liu, Y.J. and Chen, X.L. (2003b), "Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element", Mech. Mater., 35(1-2), 69-81.   DOI
27 Mousavi, A.A., Arash, B., Zhuang, X. and Rabczuk, T. (2016), "A coarse-grained model for the elastic properties of cross linked short carbon nanotube/polymer composites", Compos. Part B: Eng., 95, 404-411.   DOI
28 Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52(1), 5-25.   DOI
29 Reith, D., Meyer, H. and Muller-Plathe, F. (2001), "Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties", Macromolecules, 34(7), 2335-2345.   DOI
30 Reith, D., Putz, M. and Mller-Plathe, F. (2003), "Deriving effective mesoscale potentials from atomistic simulations", J. Comput. Chem., 24(13), 1624-1636.   DOI
31 Ru, C.Q. (2001), "Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium", J. Mech. Phys. Solids, 49(6), 1265-1279.   DOI
32 Ruoff, R.S., Qian, D. and Liu, W.K. (2003), "Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements", Comptes. Rendus. Phys., 4(9), 993-1008.   DOI
33 Rzepiela, A.J., Louhivuori, M., Peter, C. and Marrink, S.J. (2011), "Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites", Phys. Chem. Chem. Phys., 13(22), 10437-10448.   DOI
34 Segurado, J., Gonzalez, C. and LLorca, J. (2003), "A numerical investigation of the effect of particle clustering on the mechanical properties of composites", Acta Mater., 51(8), 2355-2369.   DOI
35 Sakhaee-Pour, A. (2009), "Elastic properties of single-layered graphene sheet", Solid State Commun., 149(1-2), 91-95.   DOI
36 Salvetat, J.-P., Briggs, G. and Bonard, J.-M. (1999), "Elastic and shear moduli of single-walled carbon nanotube ropes", Phys. Rev. Lett., 82(5), 944-947.   DOI
37 Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69(23), 235406.   DOI
38 Semmah, A., Beg, O.A., Mahmoud, S.R., Heireche, H. and Tounsi, A. (2014), "Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model", Adv. Mater. Res., Int. J., 3(2), 77-89.
39 Shokrieh, M.M. and Rafiee, R. (2010a), "Prediction of Young‟s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach", Mater. Des., 31(2), 790-795.   DOI
40 Shokrieh, M.M. and Rafiee, R. (2010b), "On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region", Compos. Struct., 92(3), 647-652.   DOI
41 Silani, M., Ziaei-Rad, S., Talebi, H. and Rabczuk, T. (2014), "A semi-concurrent multiscale approach for modeling damage in nanocomposites", Theor. Appl. Fract. Mech., 74, 30-38.   DOI
42 Sohlberg, K., Sumpter, B.G., Tuzun, R.E. and Noid, D.W. (1998), "Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures", Nanotechnology, 9(1), 30-36.   DOI
43 Tsai, J.-L. and Tu, J.-F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des., 31(1), 194-199.   DOI
44 Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286.   DOI
45 Sun, C.T. and Vaidya, R.S. (1996), "Prediction of composite properties from a representative volume element", Compos. Sci. Technol., 56(2), 171-179.   DOI
46 Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53(5), 1047-1071.   DOI
47 Vu-Bac, N., Rafiee, R., Zhuang, X., Lahmer, T. and Rabczuk, T. (2015a), "Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters", Compos. Part B: Eng., 68, 446-464.   DOI
48 Vu-Bac, N., Silani, M., Lahmer, T., Zhuang, X. and Rabczuk, T. (2015b), "A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites", Comput. Mater. Sci., 96, 520-535.   DOI
49 Wang, Q., Dai, J., Li, W., Wei, Z. and Jiang, J. (2008), "The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites", Compos. Sci. Technol., 68(7-8), 1644-1648.   DOI
50 Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975.   DOI
51 Xu, Y., Bai, H., Lu, G., Li, C. and Shi, G. (2008), "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets", J. Am. Chem. Soc., 130(18), 5856-5857.   DOI
52 Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22(35), 3906-3924.   DOI
53 Zhang, Y., Zhuang, X., Muthu, J., Mabrouki, T., Fontaine, M., Gong, Y. and Rabczuk, T. (2014), "Load transfer of graphene / carbon nanotube / polyethylene hybrid nanocomposite by molecular dynamics simulation", Compos. Part B, 63, 27-33.   DOI