• Title/Summary/Keyword: in vitro techniques

Search Result 355, Processing Time 0.03 seconds

From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

  • Moon, Sung-Hwan;Bae, Daekyeong;Jung, Taek-Hee;Chung, Eun-Bin;Jeong, Young-Hoon;Park, Soon-Jung;Chung, Hyung-Min
    • International Journal of Stem Cells
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Synthesis and radiolabeling of PEGylated dendrimer-G2-Gemifloxacin with 99mTc to Biodistribution study in rabbit

  • Mohtavinejad, Naser;Dolatshahi, Shaya;Amanlou, Massoud;Ardestani, Mehdi Shafiee;Asadi, Mehdi;Pormohammad, Ali
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.461-470
    • /
    • 2021
  • Infection is one of the major mortality causes throughout the globe. Nuclear medicine plays an important role in diagnosis of deep infections such as osteomyelitis, arthritis infection, heart valve and heart prosthesis infections. Techniques such as labeled leukocytes are sensitive and selective for tracking the inflammations but they are not suitable for differentiating infection from inflammation. Anionic linear-globular dendrimer-G2 was synthesized then conjugation to gemifloxacin antibiotic. The structures were identified by FT-IR, 1H-NMR, C-NMR, LC-MS and DLS. The toxicity of gemifloxacin and dendrimer-gemifloxacin complex was compared by MTT test. Dendrimer-G2-gemifloxacin was labeled by Technetium-99m and its in-vitro stability and radiochemical purity were investigated. In-vivo biodistribution and SPECT imaging were studied in a rabbit model. Identify and verify the structure of the each object was confirmed by FT-IR, 1H-NMR, C-NMR and LC-MS, also, the size and charge of this compound were 128 nm and -3/68 mv respectively. MTT test showed less toxicity of the dendrimer-G2-gemifloxacin than free gemifluxacin (P < 0.001). Radiochemical yield was > %98. Human serum stability was 84% up to 24 h. Biodistribution study at 50 min, 24 and 48 h showed that the complex is significantly absorbed by the intestine and accumulation in the lungs and affects them, finally excreted through the kidneys, biodistribution results are consistent with results from full image means of SPECT/CT technique.

Molecular Taxonomy of a Soil Actinomycete Isolate, KCCM10454 Showing Neuroprotective Activity by 16S rRNA and rpoB Gene Analysis

  • Lee Bong Hee;Kim Hong;Kim Hyun Ju;Lim Yoon Kyu;Byun Kyung Hee;Hutchinson Brian;Kim Chang Jin;Ko Young Hwan;Lee Keun Hwa;Cha Chang Yong;Kook Yoon Hoh;Kim Bum Joon
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.213-218
    • /
    • 2005
  • Epilepsy constitutes a significant public health problem, and even the newest drugs and neurosurgical techniques have proven unable to cure the disease. In order to select a group of isolates which could generate an active compound with neuroprotective or antiepileptic properties, we isolated 517 actinomycete strains from soil samples taken from Jeju Island, in South Korea. We then screened these strains for possible anti-apoptotic effects against serum deprivation-induced hippocampal cell death, using the 3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay as an in vitro test. The excitotoxic glutamate analog, kainic acid (KA), was used to induce seizures in experimental mice in our in vivo tests. As a result of this testing, we located one strain which exhibited profound neuroprotective activity. This strain was identified as a Streptomyces species, and exhibited the rifampinresistant genotype, Asn$(AAC)^$442, according to the results of 16S rRNA and rpoB gene analyses

Identification of a High-yield Technique for Isolating Endometrial Epithelial Cells from the Mouse Uterus : A Comparison of Mechanical and Sedimentation-adherence Methods

  • Sohn, Jie Ohn;Jo, Yoon Mi;Park, Hye Jin;Ahn, Ji Yeon;Song, Hyun Jin;Lim, Jeong Mook;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • An in vitro assay following culture of endometrial epithelial cells is essential for understanding epithelial cell function in reproduction. Several diverse techniques have been developed for isolating endometrial epithelial cells, although an optimal technique has not been identified. In this study, we describe a sedimentation-adherence (S-A) isolation technique with a high-yield cell-separating ability to isolate endometrial epithelial cells from 8-week-old female C57BL/6 mice. We analyzed total cell number, viability, morphology, and expression of cytokeratin 18 as an endometrial epithelial cell-specific marker in cells isolated using a mechanical method compared to the S-A technique. There were no significant differences in the total number, viability, or morphology of the putative endometrial epithelial cells with either method. In contrast, significantly more endometrial epithelial cells harvested using the S-A method were positively stained for cytokeratin 18 than those isolated using the mechanical method. These results confirm that the S-A method is more efficient for retrieving endometrial epithelial cells than a mechanical method.

Changes in Chemical Composition and Biological Activities of Oriental Crude Drugs by Food Processing Techniques IV - Increase in 5-HMF Content of Aurantii nobilis Pericarpium During Roasting Process - (식품학적 가공에 의한 생약의 성분 및 활성 변화 IV - Roasting처리에 의한 진피 중 5-HMF 함량증가 -)

  • Ni, Qinxue;Hur, Jong-Moon;Choi, Sun-Ha;Yang, Eun-Ju;Lee, Yu-Mi;Kang, Young-Hwa;Song, Kyung-Sik
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.133-138
    • /
    • 2007
  • Regarding chemical changes in oriental drugs after food processing such as roasting, fermentation, and extrusion, fifty commonly-used medicinal plants were investigated. As a result, Aurantii nobilis Pericarpium (a tangerine peel from Citrus unshu Markovich) showed remarkably different HPLC profiles after being roasted. An increased peak was isolated by repeated chromatography and identified as 5-hydroxymethyl furfral (5-HMF) by means of instrumental analyses. The 5-HMF content of Aurantii nobilis Pericarpoum reached its maximum level after being roasted for 30 min at 225$^{\circ}C$ (49.2 mg/g extract, ca 42 times of increase over untreated control). Although there were no significant changes in in vitro biological activity such as antioxidative, anti-dementia, anti-hypertension, anti-coagulation, or cytotoxicity, before and after roasting process, our results suggested that simple heat treatment might improve the value of the above oriental drug since 5-HMF has been known to possess inhibitory activities toward nitric oxide formation, tyrosinase, and sickling of red blood cells.

Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review

  • Bajpai, Vivek K.;Kang, So-Ra;Xu, Houjuan;Lee, Soon-Gu;Baek, Kwang-Hyun;Kang, Sun-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.207-224
    • /
    • 2011
  • Diseases caused by plant pathogenic bacteria constitute an emerging threat to global food security. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in several host plants leading to considerable losses in productivity and quality of harvests. Despite the ranges of controlling techniques available, the microbiological safety of economically important crops and crop plants including fruits and vegetables continues to be a major concern to the agriculture industry. On the other hand, many of the currently available antimicrobial agents for agriculture are highly toxic, non-biodegradable and cause extended environmental pollution. Besides, the use of antibiotics has provoked an increased resistance among the bacterial pathogens and their pathovars. Thus, novel efficient and safe remedies for controlling plant bacterial diseases are necessary. There has been an increasing interest worldwide on therapeutic values of natural products such as essential oils, hence the purpose of this review is to provide an overview of the published data on the antibacterial efficacy of essential oils that could be considered suitable for application in agriculture as biocontrol measures against plant pathogenic bacteria of Xanthomonas species. The current knowledge on the use of essential oils to control Xanthomonas bacteria in vitro and in vivo models has been discussed. A brief description on the legal aspects on the use of essential oils against bacterial pathogens has also been presented. Through this review, a mode of antibacterial action of essential oils along with their chemical nature and the area for future research have been thoroughly discussed.

Pregnancy and Development Rates of Human Embryos Cryopreserved at Pronuclear and 2-4 cell stages (전핵 시기 및 2-4 세포 시기에 동결 보존된 배아의 발생률 및 임신률)

  • Yang, Hyun-Won;Choi, Kyoo-Wan;Cheon, Han-Sik;Cha, Young-Beom;Lee, Seung-Jae;Park, Jong-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 1994
  • The survival and pregnancy rates were compared between non-frozen embryos and cryopreserved embryos at either pronucleate or 2-4 cell stages using the freezing and thawing techniques being identical in both groups were compared with fresh embryos. 496 embryos were frozen with 1, 2-propanediol and sucrose and 117 2-4 cell stages embryos had been thawed and 79.6 and 66.0% of them respectively were survival. Clinical pregnancy rate was 19.2% for embryos frozen at the pronucleate stage and 19.0% for embryos frozen at the 2-4 cell stages while the pregnancy rate of non-frozen embryos was 21.3%. There were no significant difference in the survival and pregnancy rates of embryos frozen at pronucleate and 2-4 cell stages. The current cumulative pregnancy rate per retrieval in all cycles with frozen zygotes is 35.4 %, consid~ erably higher than observed in single transfers of embryos without cryopreservation(21.3%); predicted pregnancy rate after transfer of all frozen embryos is 43.3 %. It is concluded that firstly, the survival and pregnancy rate of cryopreserved embryos at pronucleate or 2-4 cell stages are very similar to those from their fresh embryos and non-frozen embryos and secondly, cryopreservation substantially enhances pregnancy attainment from in vitro fertilization.

  • PDF

Orphan Nuclear Receptor Nurr1 as a Potential Novel Marker for Progression in Human Prostate Cancer

  • Wang, Jian;Yang, Jing;Zou, Ying;Huang, Guo-Liang;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2023-2028
    • /
    • 2013
  • A number of studies have indicated that Nurr1, which belongs to a novel class of orphan nuclear receptors (the NR4A family), is important for carcinogenesis. Here we investigated expression of Nurr1 protein in benign and malignant human prostate tissues and association with clinicopathologic features using immunohistochemical techniques. Moreover, we also investigated the ability of Nurr1 to influence proliferation, migration, invasion and apoptosis of human prostate cancer cells using small interfering RNA silencing. Immunohistochemical analysis revealed that the expression of Nurr1 protein was higher in prostate cancer tissues than in benign prostate tissue (P<0.001), levels being positively correlated with tumor T classification (P = 0.003), N classification (P = 0.017), M classification (P = 0.011) and the Gleason score (P = 0.020) of prostate cancer patients. In vitro, silencing of endogenous Nurr1 attenuated cell proliferation, migration and invasion, and induced apoptosis of prostate cancer cells. These results suggest that Nurr1 may be used as an indicator for prostate cancer progression and be useful for novel potential therapeutic strategies.

Accuracy of new implant impression technique using dual arch tray and bite impression coping

  • Lee, Shin-Eon;Yang, Sung-Eun;Lee, Cheol-Won;Lee, Won-Sup;Lee, Su Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study was to evaluate the accuracy of a new implant impression technique using bite impression coping and a dual arch tray. MATERIALS AND METHODS. Two implant fixtures were placed on maxillary left second premolar and first molar area in dentoform model. The model with two fixtures was used as the reference. The impression was divided into 2 groups, n=10 each. In group 1, heavy/light body silicone impression was made with pick up impression copings and open tray. In group 2, putty/light body silicone impression was made with bite impression copings and dual arch tray. The reference model and the master casts with implant scan bodies were scanned by a laboratory scanner. Surface tessellation language (STL) datasets from test groups was superimposed with STL dataset of reference model using inspection software. The three-dimensional deviation between the reference model and impression models was calculated and illustrated as a color-map. Data was analyzed by independent samples T-test of variance at ${\alpha}=.05$. RESULTS. The mean 3D implant deviations of pick up impression group (group 1) and dual arch impression group (group 2) were 0.029 mm and 0.034 mm, respectively. The difference in 3D deviations between groups 1 and 2 was not statistically significant (P=.075). CONCLUSION. Within limitations of this study, the accuracy of implant impression using a bite impression coping and dual arch tray is comparable to that of conventional pick-up impression.

Preparation and Characterization of Natural Material Extracted from Germinated Brown Rice

  • Lim, Ki-Taek;Choi, Jeong Moon;Lim, Won-Chul;Kim, Jangho;Cho, Hong-Yon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.235-243
    • /
    • 2014
  • Purpose: The aim of this study was to prepare and evaluate a natural material extracted from germinated brown rice (GBR). Herein, we evaluated whether the natural material could positively activate the biological effects seen during bone formation, including enhancement of metabolic activity, osteogenesis, and the expression of vascular endothelial growth factor (VEGF), one of the growth factors in human osteoblast-like cells. Methods: The natural material was created by a hot water extraction process after being soaked for 2~3 days in tap water and dried at $50^{\circ}C$. The material was characterized using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transformed infrared (FTIR) spectroscopy. The biological behaviors of the material were also investigated; we performed tests to assess cell cytotoxicity, metabolic activity, osteogenic markers related to bone formation, and VEGF. Results: The EDX, XRD, and FTIR results for the natural material indicated the presence of organic compounds. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. The protein levels in the extract for the $6.25{\mu}g/mL$, $12.25{\mu}g/mL$, $25{\mu}g/mL$, $50{\mu}g/mL$, and $100{\mu}g/mL$ groups were significantly different from that for the control. Conclusions: The GBR-based natural material was easy to prepare and had characteristics of a potential biomaterial. The biocompatibility of this natural material was evaluated using in vitro techniques; our findings indicate that this novel material is promising for agricultural and biological applications.