• Title/Summary/Keyword: in vitro selection

Search Result 276, Processing Time 0.045 seconds

Study on In Vitro Fertilization of Proven Bull Semen for Selection of Young Bull in Hanwoo (한우 보증종모우 선발을 위한 후보종무우 정액의 체외수정에 관한 연구)

  • 박병권;김홍기
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • This study was undertaken in an effort to select the sire bull in Hanwoo through in vitro fertilization of proven bull semen. It was used for in vitro fertilization that of the 20 proven bull semen with follicular oocytes derived from slaughterhouse ovaries of Hanwoo. The stage of maturation on the time course of bovine cumulus-enclosed oocytes incubated for 24 hours was found the highest(96.4%) than hose of other maturationi time. In vitro fertilization rate of bovine oocytes with proven bull sperm showed from 61.5 to 88.9%. Polyspermy of in vitro fertilized oocytes according to proven bulls were the highest KP 491(61.5%) nothing but KP 486, KP 491 and KP 497.

  • PDF

Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer

  • Jihyun Kim;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.225-238
    • /
    • 2022
  • The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.

One-Step Selection of Artificial Transcription Factors Using an In Vivo Screening System

  • Bae, Kwang-Hee;Kim, Jin-Soo
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • Gene expression is regulated in large part at the level of transcription under the control of sequence-specific transcriptional regulatory proteins. Therefore, the ability to affect gene expression at will using sequencespecific artificial transcription factors would provide researchers with a powerful tool for biotechnology research and drug discovery. Previously, we isolated 56 novel sequence-specific DNA-binding domains from the human genome by in vivo selection. We hypothesized that these domains might be more useful for regulating gene expression in higher eukaryotic cells than those selected in vitro using phage display. However, an unpredictable factor, termed the "context effect", is associated with the construction of novel zinc finger transcription factors--- DNA-binding proteins that bind specifically to 9-base pair target sequences. In this study, we directly selected active artificial zinc finger proteins from a zinc finger protein library. Direct in vivo selection of constituents of a zinc finger protein library may be an efficient method for isolating multi-finger DNA binding proteins while avoiding the context effect.

Establishement of Antibody Selection by Ribosome Display (Ribosome Display를 이용한 항체선별 방법의 확립)

  • Lee, Myung-Shin;Kwon, Myung-Hee;Hwang Kim, Kyongmin;Park, Sun;Shin, Ho-Joon;Kim, Hyung-Il
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.219-226
    • /
    • 2003
  • Background: Phage display is the most widely used technique among display methods to produce monoclonal antibody fragment with a specific binding activity. Having a large library for efficient antibody display/selection is quite laborious process to have more than $10^9$ members of transformants. To overcome these limitations, several in vitro selection approaches have been reported. Ribosome display that links phenotypes, proteins, directly to genotype, mRNA, is one of the in vitro display methods. Ribosome display can reach the size of scFv library up to $10^{14}$ molecules and it can be further diversified during PCR steps. To select the high affinity scFv from one pot library, we established ribosome display technique by modifying the previously reported eukaryotic translation system. Methods: To establish the antibody selection system by ribosome display, we used 3D8, anti-DNA antibody. A 3D8 scFv was synthesized in vitro by an in vitro transcription-translation system. The translated 3D8 scFv and the encoding 3D8 mRNA are connected to the ribosome. These scFv-ribosome-mRNA complexes were selected by binding to their specific antigens. The eluted mRNAs from the complexes are reverse transcribed and re-amplified by PCR. To apply this system, antibody library from immunized mouse with terminal protein (TP)-peptide of hepatitis B virus DNA polymerase TP domain was also used. This TP-peptide encompasses the 57~80 amino acid residues of TP. These mRNA/ribosome/scFv complexes by our system were panned three times against TP-peptide. The enrichment of antibody from library was determined by radioimmunoassay. Results: We specifically selected 3D8, anti-DNA antibody, against ssDNA as a model system. The selected 3D8 RNAs sequences from translation complexes were recovered by RT-PCR. By applying this model system, we enriched TP-peptide-specific scFv pools through three cycles of panning from immunized library. Conclusion: We show that our translating ribosome complexes are well maintained and we can enrich the TP-specific scFv pools. This system can be applied to select specific antibody from an antibody library.

Cumulus and granulosa cell biomarkers: a good predictor for successful oocyte and embryo developmental competence in human in vitro fertilization

  • Yu, Eun Jeong;Lyu, Sang Woo
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The oocyte quality is of great importance in infertility as it reflects the follicle developmental potential and further affects the embryo development, clinical pregnancy outcomes. The analysis of gene expression in somatic cells is an important study to better clinical in vitro fertilization (IVF) outcomes in embryo selection reflecting the appropriate communication between the oocyte and somatic cells. Specifically, somatic cell transcriptomic technology can help assess biomarkers of oocyte and embryo ability. The present article aims to overview the basic aspect of folliculogenesis and review studies involving changes in candidate gene expression of cumulus or granulosa cell related to clinical outcomes in human IVF.

Marker Genes for in Vitro Selection of Transgenic Plants

  • Brasileiro, Ana C.M.;Aragao, Francisco J.L.
    • Journal of Plant Biotechnology
    • /
    • v.3 no.3
    • /
    • pp.113-121
    • /
    • 2001
  • The use of a marker gene in a transformation process aims to give a selective advantage to the transformed cells, allowing them to grow faster and better, and to kill the non-transformed cells. In general, the selective gene is introduced into plant genome along with the genes of interest. In some cases, the marker gene can be the gene of interest that will confer an agronomic characteristic, such as herbicide resistance. In this review we list and discuss the use of the most common selective marker genes on plant transformation and the effects of their respective selective agents. These genes could be divided in categories according their mode of action: genes that confer resistance to antibiotics and herbicides; and genes for positive selection. The contention of the marker gene flow through chloroplast transformation is further discussed. Moreover, strategies to recover marker-free transgenic plants, involving multi-auto-transformation (MAT), co-transformation, site specific recombination and intragenomic relocation of transgenes through transposable elements, are also reviewed.

  • PDF