DOI QR코드

DOI QR Code

Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer

  • Jihyun Kim (Department of Obstetrics and Gynaecology, Seoul Medical Center) ;
  • Jaewang Lee (Department of Biomedical Laboratory Science, College of Health Science, Eulji University) ;
  • Jin Hyun Jun (Department of Biomedical Laboratory Science, College of Health Science, Eulji University)
  • Received : 2022.08.08
  • Accepted : 2022.11.10
  • Published : 2022.12.31

Abstract

The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.

Keywords

Acknowledgement

This project was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1D-1A1B07046419 to Jaewang Lee and NRF-2020R1F-1A1071918 to Jin Hyun Jun).

References

  1. Montag M, Liebenthron J, Koster M. Which morphological scoring system is relevant in human embryo development? Placenta 2011;32 Suppl 3:S252-6. https://doi.org/10.1016/j.placenta.2011.07.009
  2. Lundin K, Park H. Time-lapse technology for embryo culture and selection. Ups J Med Sci 2020;125:77-84. https://doi.org/10.1080/03009734.2020.1728444
  3. Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod 2016;31:2231-44. https://doi.org/10.1093/humrep/dew188
  4. Gardner DK, Balaban B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good still important? Mol Hum Reprod 2016;22:704-18. https://doi.org/10.1093/molehr/gaw057
  5. Lei CX, Sun XX. Character of cell-free genomic DNA in embryo culture medium and the prospect of its clinical application in preimplantation genetic testing. Reprod Dev Med 2022;6:51-6. https://doi.org/10.1097/RD9.0000000000000002
  6. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod 2013;28:2652-60. https://doi.org/10.1093/humrep/det314
  7. Zhang Q, Ji H, Shi J, Wang L, Ding L, Jiang Y, et al. Digital PCR detection of mtDNA/gDNA ratio in embryo culture medium for prediction of embryo development potential. Pharmgenomics Pers Med 2021;14:521-31.
  8. Heo YS, Cabrera LM, Bormann CL, Smith GD, Takayama S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip 2012; 12:2240-6. https://doi.org/10.1039/c2lc21050a
  9. Lee YS, Thouas GA, Gardner DK. Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum Reprod 2015;30:543-52. https://doi.org/10.1093/humrep/deu334
  10. Finger BJ, Harvey AJ, Green MP, Gardner DK. Combined parental obesity negatively impacts preimplantation mouse embryo development, kinetics, morphology and metabolism. Hum Reprod 2015;30:2084-96. https://doi.org/10.1093/humrep/dev142
  11. Lee YS, Gardner DK. Early cleaving embryos result in blastocysts with increased aspartate and glucose consumption, which exhibit different metabolic gene expression that persists in placental and fetal tissues. J Assist Reprod Genet 2021;38:3099-111. https://doi.org/10.1007/s10815-021-02341-8
  12. Nasiri N, Eftekhari-Yazdi P. An overview of the available methods for morphological scoring of pre-implantation embryos in in vitro fertilization. Cell J 2015;16:392-405.
  13. Minasi MG, Greco P, Varricchio MT, Barillari P, Greco E. The clinical use of time-lapse in human-assisted reproduction. Ther Adv Reprod Health 2020;14:2633494120976921.
  14. Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril 2006;86:1608-15. https://doi.org/10.1016/j.fertnstert.2006.05.037
  15. Paternot G, Debrock S, D'Hooghe T, Spiessens C. Computer-assisted embryo selection: a benefit in the evaluation of embryo quality? Reprod Biomed Online 2011;23:347-54. https://doi.org/10.1016/j.rbmo.2011.05.007
  16. Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol 2008;199:660.
  17. Kim J, Kim SH, Jun JH. Prediction of blastocyst development and implantation potential in utero based on the third cleavage and compaction times in mouse pre-implantation embryos. J Reprod Dev 2017;63:117-25. https://doi.org/10.1262/jrd.2016-129
  18. Sugimura S, Akai T, Somfai T, Hirayama M, Aikawa Y, Ohtake M, et al. Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod 2010;83:970-8. https://doi.org/10.1095/biolreprod.110.085522
  19. Basile N, Caiazzo M, Meseguer M. What does morphokinetics add to embryo selection and in-vitro fertilization outcomes? Curr Opin Obstet Gynecol 2015;27:193-200. https://doi.org/10.1097/GCO.0000000000000166
  20. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 2010;28:1115-21. https://doi.org/10.1038/nbt.1686
  21. Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril 2012;97:332-7. https://doi.org/10.1016/j.fertnstert.2011.11.042
  22. Hlinka D, Kalatova B, Uhrinova I, Dolinska S, Rutarova J, Rezacova J, et al. Time-lapse cleavage rating predicts human embryo viability. Physiol Res 2012;61:513-25.
  23. Cruz M, Garrido N, Herrero J, Perez-Cano I, Munoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online 2012;25:371-81. https://doi.org/10.1016/j.rbmo.2012.06.017
  24. Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, et al. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet 2013;30:703-10. https://doi.org/10.1007/s10815-013-9992-2
  25. Kirkegaard K, Kesmodel US, Hindkjer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod 2013;28:2643-51. https://doi.org/10.1093/humrep/det300
  26. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril 2013;100:412-9. https://doi.org/10.1016/j.fertnstert.2013.04.021
  27. Kirkegaard K, Campbell A, Agerholm I, Bentin-Ley U, Gabrielsen A, Kirk J, et al. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod Biomed Online 2014;29:156-8. https://doi.org/10.1016/j.rbmo.2014.04.011
  28. Cetinkaya M, Pirkevi C, Yelke H, Colakoglu YK, Atayurt Z, Kahraman S. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet 2015;32:27-35. https://doi.org/10.1007/s10815-014-0341-x
  29. Yang ST, Shi JX, Gong F, Zhang SP, Lu CF, Tan K, et al. Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod Biomed Online 2015;30:625-34. https://doi.org/10.1016/j.rbmo.2015.02.008
  30. Milewski R, Kuc P, Kuczynska A, Stankiewicz B, Lukaszuk K, Kuczynski W. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J Assist Reprod Genet 2015;32:571-9. https://doi.org/10.1007/s10815-015-0440-3
  31. Storr A, Venetis CA, Cooke S, Susetio D, Kilani S, Ledger W. Morphokinetic parameters using time-lapse technology and day 5 embryo quality: a prospective cohort study. J Assist Reprod Genet 2015;32:1151-60. https://doi.org/10.1007/s10815-015-0534-y
  32. Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohi J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril 2016;105:376-84. https://doi.org/10.1016/j.fertnstert.2015.11.001
  33. Coticchio G, Mignini Renzini M, Novara PV, Lain M, De Ponti E, Turchi D, et al. Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum Reprod 2018;33:23-31. https://doi.org/10.1093/humrep/dex344
  34. Zaninovic N, Nohales M, Zhan Q, de Los Santos ZM, Sierra J, Rosenwaks Z, et al. A comparison of morphokinetic markers predicting blastocyst formation and implantation potential from two large clinical data sets. J Assist Reprod Genet 2019;36:637-46. https://doi.org/10.1007/s10815-018-1396-x
  35. Desai N, Gill P. Blastomere cleavage plane orientation and the tetrahedral formation are associated with increased probability of a good-quality blastocyst for cryopreservation or transfer: a time-lapse study. Fertil Steril 2019;111:1159-68. https://doi.org/10.1016/j.fertnstert.2019.02.019
  36. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online 2008;17:385-91. https://doi.org/10.1016/S1472-6483(10)60222-2
  37. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 2011;26:2658-71. https://doi.org/10.1093/humrep/der256
  38. Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum Reprod 2012;27:2649-57. https://doi.org/10.1093/humrep/des210
  39. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril 2012;98:1458-63. https://doi.org/10.1016/j.fertnstert.2012.07.1135
  40. Freour T, Dessolle L, Lammers J, Lattes S, Barriere P. Comparison of embryo morphokinetics after in vitro fertilization-intracytoplasmic sperm injection in smoking and nonsmoking women. Fertil Steril 2013;99:1944-50. https://doi.org/10.1016/j.fertnstert.2013.01.136
  41. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril 2014;102:1287-94. https://doi.org/10.1016/j.fertnstert.2014.07.738
  42. Aguilar J, Motato Y, Escriba MJ, Ojeda M, Munoz E, Meseguer M. The human first cell cycle: impact on implantation. Reprod Biomed Online 2014;28:475-84. https://doi.org/10.1016/j.rbmo.2013.11.014
  43. Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod 2015;30:276-83. https://doi.org/10.1093/humrep/deu331
  44. VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod Biomed Online 2014;29:729-36. https://doi.org/10.1016/j.rbmo.2014.09.005
  45. Freour T, Le Fleuter N, Lammers J, Splingart C, Reignier A, Barriere P. External validation of a time-lapse prediction model. Fertil Steril 2015;103:917-22. https://doi.org/10.1016/j.fertnstert.2014.12.111
  46. Dominguez F, Meseguer M, Aparicio-Ruiz B, Piqueras P, Quinonero A, Simon C. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil Steril 2015;104:908-14. https://doi.org/10.1016/j.fertnstert.2015.06.032
  47. Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril 2016;105:369-75. https://doi.org/10.1016/j.fertnstert.2015.10.030
  48. Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril 2016;105:275-85. https://doi.org/10.1016/j.fertnstert.2015.10.013
  49. Coello A, Meseguer M, Galan A, Alegre L, Remohi J, Cobo A. Analysis of the morphological dynamics of blastocysts after vitrification/warming: defining new predictive variables of implantation. Fertil Steril 2017;108:659-66. https://doi.org/10.1016/j.fertnstert.2017.07.1157
  50. Barberet J, Bruno C, Valot E, Antunes-Nunes C, Jonval L, Chammas J, et al. Can novel early non-invasive biomarkers of embryo quality be identified with time-lapse imaging to predict live birth? Hum Reprod 2019;34:1439-49. https://doi.org/10.1093/humrep/dez085
  51. Boucret L, Tramon L, Saulnier P, Ferre-L'Hotellier V, Bouet PE, May-Panloup P. Change in the strategy of embryo selection with time-lapse system implementation-impact on clinical pregnancy rates. J Clin Med 2021;10:4111.
  52. Goto S, Kadowaki T, Tanaka S, Hashimoto H, Kokeguchi S, Shiotani M. Prediction of pregnancy rate by blastocyst morphological score and age, based on 1,488 single frozen-thawed blastocyst transfer cycles. Fertil Steril 2011;95:948-52. https://doi.org/10.1016/j.fertnstert.2010.06.067
  53. Ueno S, Berntsen J, Ito M, Uchiyama K, Okimura T, Yabuuchi A, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil Steril 2021;116:1172-80. https://doi.org/10.1016/j.fertnstert.2021.06.001
  54. Sayed S, Reigstad MM, Petersen BM, Schwennicke A, Wegner Hausken J, Storeng R. Time-lapse imaging derived morphokinetic variables reveal association with implantation and live birth following in vitro fertilization: a retrospective study using data from transferred human embryos. PLoS One 2020;15:e0242377.
  55. Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PLoS One 2022;17:e0262661.
  56. VerMilyea M, Hall JM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod 2020;35:770-84. https://doi.org/10.1093/humrep/deaa013
  57. Giscard d'Estaing S, Labrune E, Forcellini M, Edel C, Salle B, Lornage J, et al. A machine learning system with reinforcement capacity for predicting the fate of an ART embryo. Syst Biol Reprod Med 2021;67:64-78. https://doi.org/10.1080/19396368.2020.1822953
  58. Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod 2019;34:1011-8. https://doi.org/10.1093/humrep/dez064
  59. Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med 2019;2:21.
  60. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun 2012;3:1251.
  61. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online 2013;27:140-6. https://doi.org/10.1016/j.rbmo.2013.04.013
  62. Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril 2014;101:699-704. https://doi.org/10.1016/j.fertnstert.2013.12.005
  63. Rienzi L, Capalbo A, Stoppa M, Romano S, Maggiulli R, Albricci L, et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod Biomed Online 2015;30:57-66. https://doi.org/10.1016/j.rbmo.2014.09.012
  64. Chawla M, Fakih M, Shunnar A, Bayram A, Hellani A, Perumal V, et al. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet 2015;32:69-75. https://doi.org/10.1007/s10815-014-0372-3
  65. Vera-Rodriguez M, Chavez SL, Rubio C, Reijo Pera RA, Simon C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun 2015;6: 7601.
  66. Mumusoglu S, Yarali I, Bozdag G, Ozdemir P, Polat M, Sokmensuer LK, et al. Time-lapse morphokinetic assessment has low to moderate ability to predict euploidy when patient- and ovarian stimulation-related factors are taken into account with the use of clustered data analysis. Fertil Steril 2017;107:413-21. https://doi.org/10.1016/j.fertnstert.2016.11.005
  67. Desai N, Goldberg JM, Austin C, Falcone T. Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertil Steril 2018;109:665-74. https://doi.org/10.1016/j.fertnstert.2017.12.025
  68. Rocafort E, Enciso M, Leza A, Sarasa J, Aizpurua J. Euploid embryos selected by an automated time-lapse system have superior SET outcomes than selected solely by conventional morphology assessment. J Assist Reprod Genet 2018;35:1573-83. https://doi.org/10.1007/s10815-018-1265-7
  69. Huang TT, Huang DH, Ahn HJ, Arnett C, Huang CT. Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reprod Biomed Online 2019;39:27-39. https://doi.org/10.1016/j.rbmo.2019.01.010
  70. Yap WY, Lee CS, Lim YX, Lim MW. 20. Relationship between euploidy rates and D5 KIDScore of blastocysts derived from embryoscope. Reprod Biomed Online 2019;39:e39.
  71. Gazzo E, Pena F, Valdez F, Chung A, Bonomini C, Ascenzo M, et al. The Kidscore D5 algorithm as an additional tool to morphological assessment and PGT-A in embryo selection: a time-lapse study. JBRA Assist Reprod 2020;24:55-60.
  72. Ozbek IY, Mumusoglu S, Polat M, Bozdag G, Sokmensuer LK, Yarali H. Comparison of single euploid blastocyst transfer cycle outcome derived from embryos with normal or abnormal cleavage patterns. Reprod Biomed Online 2021;42:892-900. https://doi.org/10.1016/j.rbmo.2021.02.005
  73. Urich M, Ugur MR, Li F, Shamma FN, Hammoud A, Cottrell HN, et al. Comparison of two culture media on morphokinetics and ploidy status of sibling embryos. Zygote 2022;30:410-5. https://doi.org/10.1017/S0967199421000927
  74. De Gheselle S, Jacques C, Chambost J, Blank C, Declerck K, De Croo I, et al. Machine learning for prediction of euploidy in human embryos: in search of the best-performing model and predictive features. Fertil Steril 2022;117:738-46. https://doi.org/10.1016/j.fertnstert.2021.11.029
  75. Chavez-Badiola A, Flores-Saiffe-Farias A, Mendizabal-Ruiz G, Drakeley AJ, Cohen J. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online 2020;41:585-93. https://doi.org/10.1016/j.rbmo.2020.07.003
  76. Huang B, Tan W, Li Z, Jin L. An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data. Reprod Biol Endocrinol 2021;19:185.
  77. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun 2020;11:2958.
  78. Li J, Li C, Liu X, Yang J, Zhang Q, Han W, et al. GDF9 concentration in embryo culture medium is linked to human embryo quality and viability. J Assist Reprod Genet 2022;39:117-25. https://doi.org/10.1007/s10815-021-02368-x
  79. Rio PD, Madan P. Does miRNA expression in the spent media change during early embryo development? Front Vet Sci 2021;8:658968.
  80. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod 2008;14:679-90. https://doi.org/10.1093/molehr/gan066
  81. Ferrick L, Lee YS, Gardner DK. Metabolic activity of human blastocysts correlates with their morphokinetics, morphological grade, KIDScore and artificial intelligence ranking. Hum Reprod 2020; 35:2004-16. https://doi.org/10.1093/humrep/deaa181
  82. Huang J, Yao Y, Jia J, Zhu X, Ma J, Wang J, et al. Chromosome screening of human preimplantation embryos by using spent culture medium: sample collection and chromosomal ploidy analysis. J Vis Exp 2021;(175):e62619.
  83. Eldarov C, Gamisonia A, Chagovets V, Ibragimova L, Yarigina S, Smolnikova V, et al. LC-MS analysis revealed the significantly different metabolic profiles in spent culture media of human embryos with distinct morphology, karyotype and implantation outcomes. Int J Mol Sci 2022;23:2706.
  84. Bori L, Dominguez F, Fernandez EI, Del Gallego R, Alegre L, Hickman C, et al. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod Biomed Online 2021;42:340-50. https://doi.org/10.1016/j.rbmo.2020.09.031
  85. Hanson BM, Tao X, Hong KH, Comito CE, Pangasnan R, Seli E, et al. Noninvasive preimplantation genetic testing for aneuploidy exhibits high rates of deoxyribonucleic acid amplification failure and poor correlation with results obtained using trophectoderm biopsy. Fertil Steril 2021;115:1461-70. https://doi.org/10.1016/j.fertnstert.2021.01.028
  86. Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril 2016;106:1312-8. https://doi.org/10.1016/j.fertnstert.2016.07.1112
  87. Chen Y, Gao Y, Jia J, Chang L, Liu P, Qiao J, et al. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J Clin Invest 2021;131:e146051.
  88. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update 2020;26:16-42. https://doi.org/10.1093/humupd/dmz033
  89. D'Alessandro A, Federica G, Palini S, Bulletti C, Zolla L. A mass spectrometry-based targeted metabolomics strategy of human blastocoele fluid: a promising tool in fertility research. Mol Biosyst 2012;8:953-8. https://doi.org/10.1039/C1MB05358B
  90. Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online 2020;40:779-96. https://doi.org/10.1016/j.rbmo.2020.02.002
  91. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 2010;25:613-22. https://doi.org/10.1093/humrep/dep449
  92. Mancini V, McKeegan PJ, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, et al. Probing morphological, genetic and metabolomic changes of in vitro embryo development in a microfluidic device. Biotechnol Prog 2021;37:e3194.
  93. Herrmann M, Roy E, Veres T, Tabrizian M. Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 2007;7:1546-52. https://doi.org/10.1039/b707883h
  94. Eteshola E, Balberg M. Microfluidic ELISA: on-chip fluorescence imaging. Biomed Microdevices 2004;6:7-9. https://doi.org/10.1023/B:BMMD.0000013360.65653.c2
  95. Venturas M, Shah JS, Yang X, Sanchez TH, Conway W, Sakkas D, et al. Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy. Hum Reprod 2022;37:411-27. https://doi.org/10.1093/humrep/deab283
  96. Polanski LT, Coelho Neto MA, Nastri CO, Navarro PA, Ferriani RA, Raine-Fenning N, et al. Time-lapse embryo imaging for improving reproductive outcomes: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014;44:394-401. https://doi.org/10.1002/uog.13428
  97. Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet 2015;32:1025-30. https://doi.org/10.1007/s10815-015-0510-6
  98. Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod Biomed Online 2017;35:511-20. https://doi.org/10.1016/j.rbmo.2017.06.022
  99. Chen M, Wei S, Hu J, Yuan J, Liu F. Does time-lapse imaging have favorable results for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization? A meta-analysis and systematic review of randomized controlled trials. PLoS One 2017;12:e0178720.
  100. Armstrong S, Bhide P, Jordan V, Pacey A, Marjoribanks J, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev 2019;5: CD011320.
  101. Liu Y, Qi F, Matson P, Morbeck DE, Mol BW, Zhao S, et al. Between-laboratory reproducibility of time-lapse embryo selection using qualitative and quantitative parameters: a systematic review and meta-analysis. J Assist Reprod Genet 2020;37:1295-302. https://doi.org/10.1007/s10815-020-01789-4
  102. Wang S, Ding L, Zhao X, Zhang N, Hu Y, Sun H. Embryo selection for single embryo transfer on day 3 based on combination of cleavage patterns and timing parameters in in vitro fertilization patients. J Reprod Med 2016;61:254-62.
  103. Kovacs P, Matyas S, Forgacs V, Sajgo A, Molnar L, Pribenszky C. Non-invasive embryo evaluation and selection using time-lapse monitoring: results of a randomized controlled study. Eur J Obstet Gynecol Reprod Biol 2019;233:58-63. https://doi.org/10.1016/j.ejogrb.2018.12.011
  104. Aparicio-Ruiz B, Basile N, Perez Albala S, Bronet F, Remohi J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril 2016;106:1379-85. https://doi.org/10.1016/j.fertnstert.2016.07.1117
  105. Fishel S, Campbell A, Foad F, Davies L, Best L, Davis N, et al. Evolution of embryo selection for IVF from subjective morphology assessment to objective time-lapse algorithms improves chance of live birth. Reprod Biomed Online 2020;40:61-70. https://doi.org/10.1016/j.rbmo.2019.10.005
  106. Hur YS, Ryu EK, Hyun CS, Yang SH, Yoon SH, Lim KS, et al. Retrospective study of single vitrified-warmed blastocyst transfer cycles according to the presence of morphokinetic variables. Clin Exp Reprod Med 2018;45:52-5. https://doi.org/10.5653/cerm.2018.45.1.52
  107. Chera-Aree P, Thanaboonyawat I, Thokha B, Laokirkkiat P. Comparison of pregnancy outcomes using a time-lapse monitoring system for embryo incubation versus a conventional incubator in in vitro fertilization: an age-stratification analysis. Clin Exp Reprod Med 2021;48:174-83. https://doi.org/10.5653/cerm.2020.04091
  108. Reignier A, Girard JM, Lammers J, Chtourou S, Lefebvre T, Barriere P, et al. Performance of day 5 KIDScore morphokinetic prediction models of implantation and live birth after single blastocyst transfer. J Assist Reprod Genet 2019;36:2279-85. https://doi.org/10.1007/s10815-019-01567-x
  109. Kato K, Ueno S, Berntsen J, Ito M, Shimazaki K, Uchiyama K, et al. Comparing prediction of ongoing pregnancy and live birth outcomes in patients with advanced and younger maternal age patients using KIDScore day 5: a large-cohort retrospective study with single vitrified-warmed blastocyst transfer. Reprod Biol Endocrinol 2021;19:98.
  110. Magdi Y, Samy A, Abbas AM, Ibrahim MA, Edris Y, El-Gohary A, et al. Effect of embryo selection based morphokinetics on IVF/ICSI outcomes: evidence from a systematic review and meta-analysis of randomized controlled trials. Arch Gynecol Obstet 2019;300:1479-90. https://doi.org/10.1007/s00404-019-05335-1
  111. Meng Q, Xu Y, Zheng A, Li H, Ding J, Xu Y, et al. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization/intracytoplasmic sperm injection: a single-center randomized controlled study. Fertil Steril 2022;117:1203-12. https://doi.org/10.1016/j.fertnstert.2022.02.015
  112. Ahlstrom A, Lundin K, Lind AK, Gunnarsson K, Westlander G, Park H, et al. A double-blind randomized controlled trial investigating a time-lapse algorithm for selecting day 5 blastocysts for transfer. Hum Reprod 2022;37:708-17. https://doi.org/10.1093/humrep/deac020
  113. Farra C, Choucair F, Awwad J. Non-invasive pre-implantation genetic testing of human embryos: an emerging concept. Hum Reprod 2018;33:2162-7. https://doi.org/10.1093/humrep/dey314
  114. Munne S. Status of preimplantation genetic testing and embryo selection. Reprod Biomed Online 2018;37:393-6. https://doi.org/10.1016/j.rbmo.2018.08.001
  115. Kuliev A, Rechitsky S. Preimplantation genetic testing: current challenges and future prospects. Expert Rev Mol Diagn 2017;17:1071-88. https://doi.org/10.1080/14737159.2017.1394186
  116. Wu H, Ding C, Shen X, Wang J, Li R, Cai B, et al. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA. Medicine (Baltimore) 2015;94:e669.
  117. Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci U S A 2016;113:11907-12. https://doi.org/10.1073/pnas.1613294113
  118. Li P, Song Z, Yao Y, Huang T, Mao R, Huang J, et al. Preimplantation genetic screening with spent culture medium/blastocoel fluid for in vitro fertilization. Sci Rep 2018;8:9275.
  119. Ou Z, Deng Y, Liang Y, Chen Z, Sun L. Improved non-invasive preimplantation genetic testing for beta-thalassemia using spent embryo culture medium containing blastocoelic fluid. Front Endocrinol (Lausanne) 2022;12:793821.
  120. Shitara A, Takahashi K, Goto M, Takahashi H, Iwasawa T, Onodera Y, et al. Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy. PLoS One 2021;16:e0246438.
  121. Yin B, Zhang H, Xie J, Wei Y, Zhang C, Meng L. Validation of preimplantation genetic tests for aneuploidy (PGT-A) with DNA from spent culture media (SCM): concordance assessment and implication. Reprod Biol Endocrinol 2021;19:41.
  122. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod 2018;33:745-56. https://doi.org/10.1093/humrep/dey028
  123. Li J, Liu Y, Qian Y, Zhang D. Noninvasive preimplantation genetic testing in assisted reproductive technology: current state and future perspectives. J Genet Genomics 2020;47:723-6. https://doi.org/10.1016/j.jgg.2020.11.007
  124. Rogers A, Menezes M, Kane SC, Zander-Fox D, Hardy T. Preimplantation genetic testing for monogenic conditions: is cell-free DNA testing the next step? Mol Diagn Ther 2021;25:683-90. https://doi.org/10.1007/s40291-021-00556-0
  125. Sialakouma A, Karakasiliotis I, Ntala V, Nikolettos N, Asimakopoulos B. Embryonic cell-free DNA in spent culture medium: a non-invasive tool for aneuploidy screening of the corresponding embryos. In Vivo 2021;35:3449-57. https://doi.org/10.21873/invivo.12645
  126. Pais RJ, Sharara F, Zmuidinaite R, Butler S, Keshavarz S, Iles R. Bioinformatic identification of euploid and aneuploid embryo secretome signatures in IVF culture media based on MALDI-ToF mass spectrometry. J Assist Reprod Genet 2020;37:2189-98. https://doi.org/10.1007/s10815-020-01890-8