• 제목/요약/키워드: in vitro protein digestibility

검색결과 344건 처리시간 0.035초

참게육 첨가 맛 두부의 단백질 품질 (Protein Qualities of Seasoned Tofu Containing Freshwater Crab Meat)

  • 류홍수
    • 한국수산과학회지
    • /
    • 제42권6호
    • /
    • pp.580-584
    • /
    • 2009
  • The effect of freshwater crab meat additive on protein quality of tofu was studied. Tofu containing freshwater crab meat(TCM) prepared by the formulation for the best sensory qualities had about 20% more lipid and ash content than those of commercial tofu. TCM showed a higher content of lysine, methionine, cysteine and tyrosine compared with those in commercial tofu. TCM was comparable to commercial tofu(CT) regarding the in vitro protein digestibility(95%). A considerable difference in computed protein efficiency ratio(C-PER) resulted between CT(1.76-1.81) and TCM(2.61). Therefore, crab meat has potential as an ingredient for enriching essential amino acid and improving protein quality of CT.

Nutritive Value of Wheat Straw Treated with Pleurotus Fungi

  • Fazaeli, H.;Mahmodzadeh, H.;Azizi, A.;Jelan, Z.A.;Liang, J.B.;Rouzbehan, Y.;Osman, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권12호
    • /
    • pp.1681-1688
    • /
    • 2004
  • Soaked and pasteurised wheat straw was inoculated with five species of Pleurotus fungi (coded P-21, P-30, P-41, P-60 and P-90), packed in polyethylene bags and incubated in a fermentation chamber for 21 days. The chemical composition, in vitro digestibility and in sacco degradability of the treated and untreated straw were estimated using a complete randomised design consisting of six treatments and four replicates. In a feeding trial, in vivo digestibility and voluntary intake were determined in bulls, using a $3{\times}3$change over design. Dietary treatments were: 1) untreated wheat straw (UWS) as control; 2) fungal treated (P-41) wheat straw before mushroom formation (FTWS); 3) spent wheat straw (SPWS) after mushrooms were harvested. Apart from P-90, fungal treatment significantly (p<0.05) increased the crude protein (CP) and reduced the cell wall components of the straw. The in vitro dry mater and organic mater digestibility significantly (p<0.05) increased in the treated straw particularly with the treatments of P-41 and P-60. The in situ degradability and in vivo digestibility of DM and OM were significantly (p<0.05) increased in treated straws with the highest values observed for treatment P-41. The intake of DM, OM and digestible organic mater (DOM) were significantly (p<0.05) increased in cows fed FTWS.

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.

해양식량자원의 가공조건별 영양적 품질평가 -2. 명태연육 단백질품질에 미치는 냉동변성방지제의 영향- (Effects of Processing Conditions on Nutritional Qualities of Seafood -2. Effects of Cryoprotectants on the Protein Qualities of Pollock Surimi-)

  • 류홍수;이근우;이강호
    • 한국수산과학회지
    • /
    • 제27권4호
    • /
    • pp.335-343
    • /
    • 1994
  • 명태연육 냉동변성을 억제할 수 있는 냉동변성방지제의 적정량을 알아보기 위하여 crystalline sorbitol을 비롯한 세가지의 변성방지제 및 sorbitol/sucrose 혼합제제를 첨가하 여 $-25^{\circ}C$에서 16주간 저장했을 때의 단백질품질 변화를 실험하였다. $8\%$ 수준의 sucrose-sorbitol 혼합제제(1:1, w/w)를 $0.2\%$ Na-pyrophosphate/ Na-triphosphate(1:1)와 병용하였을 때 drip loss가 가장 적었으며, 염용성단백질량은 가장 많았다. 또한 혼합제제를 사용했을 때는 trypsin inhibitor량, 단백질소화율 및 단백효율비의 변화가 거의 없어 단백질품질 보전에 효과적이었으나, 냉동변성방지제를 처리하지 않았을 경우에는 단백효율비와 소화율은 급격히 떨어졌었다. Polyphosphate나 maltodextrin의 경우에는 처리 농도가 증가하여도 소화율저하 방지에는 별효과가 없었으나, $4{\sim}6\%$의 sorbitol, 또는 $10\%$수준의 sucrose는 polyphosphate를 병용하지 않아도 소화율저하는 효과적으로 막을 수 있었다. $8\%$ 수준의 sorbitol/sucrose 혼합제제(5:3, w/w)처리가 소화율 보전효과로 볼 때 냉동연육의 단백질품질저하 방지에 가장 효과적이었다.

  • PDF

Effects of Gamma Irradiation on Nutrient Composition, Anti-nutritional Factors, In vitro Digestibility and Ruminal Degradation of Whole Cotton Seed

  • Hahm, Sahng-Wook;Son, Heyin;Kim, Wook;Oh, Young-Kyoon;Son, Yong-Suk
    • Journal of Animal Science and Technology
    • /
    • 제55권2호
    • /
    • pp.123-130
    • /
    • 2013
  • Whole cotton seed (WCS) has become one of the major feed ingredients in TMR for dairy cattle in Korea, and WCS for feed use is mostly imported from abroad. Since this genetically modified oil seed is usually fed to the animal in raw state, its germination ability, if last long, often causes concerns about ecological disturbances. In the process of looking for effective conditions to remove germination ability of WCS this study had the objectives to evaluate the nutritional effects of gamma irradiation at doses of 8, 10 and 12 kGy on changes in nutrient contents, anti-nutritional factors, in vitro digestibility and ruminal degradability. No significant differences were found in proximate analysis of nutrients between raw WCS and gamma irradiated one. Glycine and threonine contents significantly increased when the WCS was exposed to gamma ray as compared to untreated WCS (p<0.05). As for fatty acid composition, no significant differences were observed with the irradiation treatment. Free gossypol in WCS was decreased (p<0.05) by gamma irradiation treatment. Of the 3 different levels of gamma irradiation, a dose of 12 kGy was found to be the most effective in reducing free gossypol concentration. Results obtained from in situ experiment indicated that gamma irradiation at a dose of 10 kGy significantly (p<0.05) lowered rumen degradability of both dry matter and crude protein as compared with raw WCS. However, there were no significant differences in rapidly degradable and potentially degradable fractions of crude protein due to 10 kGy gamma irradiation. Overall, this study show that gamma irradiation at a dose of 10 kGy is the optimum condition for removing germination ability of WCS, and could improve nutritive value for the ruminant with respect to the decrease in both ruminal protein degradability and gossypol content of WCS.

Effect of Tannins in Acacia nilotica, Albizia procera and Sesbania acculeata Foliage Determined In vitro, In sacco, and In vivo

  • Alam, M.R.;Amin, M.R.;Kabir, A.K.M.A.;Moniruzzaman, M.;McNeill, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.220-228
    • /
    • 2007
  • The nutritive value and the effect of tannins on the utilization of foliage from three commonly used legumes, Acacia nilotica, Albizia procera, and Sesbania acculeata, were determined. Three mature rumen-fistulated bullocks were used to study in sacco degradability and twelve adult sheep were randomly allocated on the basis of live weight to 4 groups of 3 in each to study the in vivo digestibility of the foliages. In all foliages, the contents of crude protein (17 to 24% of DM) were high. Fibre was especially high in Albizia (NDF 58.8% of DM vs. 21% in Sesbania and 15.4% in Acacia). Contents of both hydrolysable (4.4 to 0.05%) and condensed tannins (1.2 to 0.04%) varied from medium to low in the foliages. Acacia contained the highest level of total phenolics (20.1%), protein precipitable phenolics (13.2%) and had the highest capacity to precipitate protein (14.7%). Drying in shade reduced the tannin content in Acacia and Albizia by 48.6 and 69.3% respectively. The foliages ranked similarly for each of the different methods used to estimate tannin content and activity. Acacia and Sesbania foliage was highly degradable (85-87% potential degradability of DM in sacco), compared to Albizia (52%), indicating a minimal effect of tannins in Acacia and Sesbania. Yet, in vitro, the tannins in the Acacia inhibited microbial activity more than those in Albizia and Sesbania. Following the addition of polyethylene glycol to neutralise the tannins, gas production and microbial growth increased by 59% and 0.09 mg RNA equiv./dg microbial yield respectively in the Acacia, compared to 16-17% and 0.06 mg RNA equiv./dg microbial yield in the other foliages. There was a trend for low in vivo apparent digestibility of N in the Acacia (43.2%) and Albizia (44.2%) compared to the Sesbania (54.5%) supplemented groups. This was likely to be due to presence of tannins. Consistent with this was the low N retention (0.22 and 0.19 g N/g NI) in sheep supplemented with Acacia and Albizia compared to that for the Sesbania (0.32). Similarly, a trend for poor microbial N yield was observed in sheep fed these foliages. Across the foliages tested, an increase in tannin content was associated with a reduction in ruminal fermentation, N digestibility and N retention. For overall nutritive value, Sesbania proved to be the superior forage of the three tested.

수산식품 단백질 품질평가를 위한 새로운 모델 설정 2. 해산 갑각류의 C-PER 및 DC-PER (Predicting the Nutritional Value of Seafood Proteins as Measured by Newer In Vitro Model 2. C-PER and DC-PER of Marine Crustacea)

  • 류홍수;이근우
    • 한국수산과학회지
    • /
    • 제19권3호
    • /
    • pp.219-226
    • /
    • 1986
  • 수산식품단백질의 정확한 품질평가를 위한 새로운 실험 모델을 개발하기 위한 일환으로 전보(Ryu등, 1985)에 이어 6종의 해산 갑각류를 선정하여 비교적 최근에 개발된 four-enzyme digestion technique 및 C-PER assay를 사용하여 이의 품질을 평가하였으며, 또한 이들 technique의 갑각류 단백질에 적용 여부 및 선택성을 검토하였고 그 결과에 영향을 미치는 제요인들을 조사하였다. 시료로 사용된 해산 갑각류는 조단백질이 $85\%$ 이상(건물중량)으로 고급의 단백질원이었으며 이에 조지방 및 조회분을 합하면 $95\%$를 상회하여 이들 세 성분이 주성분이었다. In vitro소화율은 새우류의 경우 $83{\sim}86\%$이었고 어체가 작을 수록 소화율은 높은 반면 trypsin 비소화성물질은 적었다. 생 꽃게육의 소화율은 $80\%$ 정도인 반면, 자숙한 붉은 대게류의 소화율은 $86\%$ 이상으로 자숙에 의한 소화율 증가를 보였고, 부위별로는 집게육의 소화율이 높았다. 일반적으로 생 갑각류의 in vitro 소화율이 낮은 것은 선도저하에 의한 육의 pH변화에 기인된 것으로 생각된다. 새우류 및 게류의 lysinc 함량은 표준 ANRC casein보다 높았으나 다른 필수 아미노산인 Trp, Cys, Met 등은 약간 낮았고 특히 Val, Tyr, Phe 등의 함량은 $50\%$ 정도에 불과하였다. 전반적인 해산 갑각류의 C-PER과 DC-PER은 $2.1{\sim}2.4$정도로 표준단백질 및 다른 어류단백질의 C-PER 및 DC-PER보다 낮았으나 예측소화율은 모두 $90\%$ 이상을 상회하여, 지금까지 알려진 C-PER이 낮은 육단백질의 DC-PER은 훨씬 높다는 일반적인 경향과 상이한 결과를 보여 해산 갑각류 단백질 품질평가시, 소화율은 예측소화율(predicted digestibility) 측정법으로 단백효율비는 보다 정확한 in vitro 소화율 측정법의 개발을 전제로 C-PER technique를 적용함이 바람직할 것 같으며, 보다 정확한 in vitro 소화율 측정에는 선도에 따른 최초의pH, 유리아미노산의 함량 및 TIS 함량 등이 고려된 새로운 model이 개발되어야 할 것으로 생각되었다.

  • PDF

Changes in Nutritive Value and Digestion Kinetics of Canola Seed Due to Microwave Irradiation

  • Ebrahimi, S.R.;Nikkhah, A.;Sadeghi, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.347-354
    • /
    • 2010
  • This study aimed to evaluate effects of 800 W microwave irradiation for 2, 4 and 6 min on chemical composition, antinutritional factors, ruminal dry matter (DM) and crude protein (CP) degradability, and in vitro CP digestibility of canola seed (CS). Nylon bags of untreated or irradiated CS were suspended in the rumen of three bulls from 0 to 48 h. Protein subfractions of untreated and microwave irradiated CS before and after incubation in the rumen were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Microwave irradiation had no effect on chemical composition of CS (p>0.05). There was a linear decrease (p<0.001) in the phytic acid and glucosinolate contents of CS as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased the phytic acid content of CS by 8.2, 27.6 and 48.6%, respectively. The total glucosinolate contents of CS microwave irradiated for 2, 4 and 6 min decreased by 41.5, 54.7 and 59.0% respectively, compared to untreated samples. The washout fractions of DM and CP and degradation rate of the b fraction of CP decreased linearly (p<0.001) as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased effective degradability (ED) of CP at a ruminal outflow rate of 0.05 $h^{-1}$ by 4.7, 12.3 and 21.0%, respectively. Microwave irradiation increased linearly (p<0.001) in vitro CP digestibility of ruminally undegraded CS collected after 16 h incubation. Electrophoresis results showed that napin subunits of untreated CS disappeared completely within the zero incubation period, whereas cruciferin subunits were degraded in the middle of the incubation period (16 h incubation period). In 4 and 6 min microwave irradiated CS, napin subunits were degraded after 4 and 16 h incubation periods, respectively, and cruciferin subunits were not degraded untile 24 h of incubation. In conclusion, it seems that microwave irradiation not only protected CP of CS from ruminal degradation, but also increased in vitro digestibility of CP. Moreover, microwave irradiation was effective in reducing glucosinolate and phytic acid contents of CS.

가축분이 초지의 토양과 생산성에 미치는 영향 (The Effect of Animal Menure on the Soil Characters and Productivity of Grassland)

  • 정찬;전병태
    • 한국초지조사료학회지
    • /
    • 제9권1호
    • /
    • pp.48-55
    • /
    • 1989
  • This experiment was conducted to investigate the effect of animal stable manure on the dry matter yield, botanical composition, crude protein content rates, in vitro digestibility and soil characters with treatments, which were divided into cattle manure, swine manure and poultly excreta of 375 and 750kg/lOa, respectively. The results obtained were summarized as follows: 1. A comparison made on the grass yield for one year period following the termination of the experiment did not indicate any signification in the yield of dry matter difference between chemical fertilizer treatment and 750kg/10a of organic manure. 2. Botanical composition was not shown an increasing of weed or bare land in organic manure of 375 and 750kg/lOa application during the whole period of growth. 3. Crude protein content and in vitro digestibility were shown an increasing tendency according to the increase of organic manure application. 4. Crude protein yield in organic manure of 750kg/10a was not a large difference compared with chemical fertilizer treatment. 5. Soil composition of organic manure had higher than the soil composition of chemical fertilizer treatment, which was shown an increasing tendency according to the increase of organic manure. 6. Therefore, It was suggested that the effect of organic manure on dry matter yield, botanical composition was similar to chemical fertilizer treatment and soil composition of organic manure had higher organic matter, available phosphate, potassium and C.E.C than the soil composition of chemical fertilizer treatment.

  • PDF

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • 제62권5호
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.