• Title/Summary/Keyword: in vitro plantlet regeneration

Search Result 40, Processing Time 0.018 seconds

An Efficient Plant Regeneration System for Sorghum bicolor - a Valuable Major Cereal Crop

  • Baskaran P.;Jayabalan N.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.247-257
    • /
    • 2005
  • An efficient, rapid and large-scale in vitro clonal propagation of agronomically important Indian cereal crop genotypes (NSH27 & K5) of Sorghum bicolor (L.) Moench. by enhanced shoot proliferation in shoot tip segments was designed. MS medium fortified with plant growth regulators and coconut water markedly influenced in vitro propagation of Sorghum bicolor. In vitro plantlet production system has been investigated on Murashige and Skoog (MS) medium with the synergistic combination of 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), 5% coconut water and 3% sucrose which promoted the maximum number of shoots as well as beneficial shoot length. Subculturing of shoot tip segments on a similar medium enabled continuous production of more than 100 healthy shoots with similar frequency. When the healthy shoot clumps were cultured on MS medium fortified with 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), ${\alpha}$-naphthaleneacetic acid ($2.7\;{\mu}M$), ascorbic acid ($30.0\;{\mu}M$) and 5% coconut water, a rapid production of axillary and adventitious buds was developed after 8 wk culture. More than 300 shoots were produced 10 wk after culture. Rooting was highest (100%) on half strength MS medium containing 22.8 mM IAA. Micropropagated plants established in garden soil, farmyard soil and sand (2:1:1) were uniform and identical to the donor plant with respect to growth characteristics. These plants grew normally without showing any traits.

Thidiazuron Induced High Frequency Adventitious Shoot Formation and Plant Regeneration in Capsicum annuum L.

  • VENKATAIAH PEDDABOINA;CHRISTOPHER THAMIDALA;SUBHASH KARAMPURI
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.245-250
    • /
    • 2003
  • An efficient procedure was developed for adventitious shoot bud induction and plantlet regeneration from various explants of the ten genotypes of Pepper (Capsicum annuum L.) using Thidiazuron (TDZ). Among various treatments at 1.0-3.0 mg/L TDZ Induced maximum number of adventitious shoots depending upon the explant type and genotype compared to other treatments. Among the explants tested, leaf induced maximum number of adventitious shoots than the cotyledons. TDZ-mediated organo-genesis was possible in 10 pepper cultivars, the extent of the response being genotype-dependent. Of the ten genotypes tested, C. annuum cvs CA960, $G_4$ and X-235 were produced maximum number of adventitious shoots and Sell was the least, and all other genotypes gave moderate response. Elongation of multiple shoots was observed on medium supplemented with SA (0.05 mg/L) in combination of IAA (0.05 mg/L). Differences in ability for in vitro shoot regeneration and elongation depend upon the variety and explant type. The elongated shoots were success. Fully rooted on MS medium containing at 1.0 mG/L IAA. Plantlets regenerated from different explants of ten genotypes were found to be diploid (2n=24) and were devoid of any chromosomal aberrations. Regenerated plants were successfully established in soil where 85-90% of them developed into morphologically normal and fertile plants.

In vitro Multiple Shoot Proliferation and Plant Regeneration of Vanilla planifolia Andr. - A Commercial Spicy Orchid

  • Gopi C.;Vatsala T.M.;Ponmurugan P.
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 2006
  • In vitro mass multiplication of Vanilla planifolia was investigated using node as explant. Multiple shoots were developed in MS medium supplemented with $2.0mgl^{-1}$ 6-benzylaminopurine and $1.0mgl^{-1}$ $\alpha$-naphthalene acetic acid. Multiple shoots were maintained for 6-T weeks with regular subculturing at the end of $3^{rd}$ week onto fresh medium. The maximum number of shoots at the rate of 12.8 per node segment was achieved over a period of four weeks. The elongated shoots were separated from the shoot clusters and were transferred onto half strength MS medium supplemented with indole-3-acetic acid ($1.0mgl^{-1}$) over a period of 28 days for induction of roots. The development of roots was observed on $7^{th}$ day of incubation. The in vitro raised plantlets were transferred to poly-cups, covered with polyethylene sheets and maintained under shade net for 25 days for hardening. Finally these plants were transferred to field and recorded that 85 % of tissue cultured plants were survived. From the present study, a simple and efficient micropropagation protocol was developed for Vanilla planifolia using single node segments as explants.

Influence of plant growth regulators on adventitious shoot formation of Glehnia littoralis Fr. Schmid (갯방풍의 기내부정아 형성에 미치는 식물생정조절물질의 영향)

  • Choo, Byung-Kil;Ji, Yun-Ui;Moon, Byeong-Cheol;Choi, Go-Ya;Lee, Hye-Won;Lee, A-Yeong;Kim, Ho-Kyoung
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.1
    • /
    • pp.113-116
    • /
    • 2008
  • Petiole explant of Glehnia littoralis Fr. Schmidt was in vitro cultured MS plant medium(DUCHEFA co.) supplemented with various plant growth regulators and examined to find out their optimum combination and concentration for plantlet regeneration. We investigated optimal condition for efficient plant regeneration through adventitious shoot formation on MS plant medium with various kinds of plant growth regulators. Embryogenic calli and adventitious shoot formation were greatly influenced by plant growth regulators. Embryogenic calli induction showed a good response on MS medium supplemented with NAA and BA than others. Especially, combination of 1.0 mg/L NAA and 0.5 mg/L BA on MS medium led to the greatest frequency in adventitious shoot. The results suggest that plant regulator selection be important factor to achieve an efficient regeneration.

  • PDF

The Factors on Somatic Embryogenesis of Soybean [Glycine max. (L.) Merrill]

  • Kim, Kyong-Ho;Kim, Hag-Sin;Oh, Young-Jin;Suh, Sug-Kee;Kim, Tae-Soo;Park, Ho-Kee;Park, Moon-Soo;Kim, Seok-Dong;Yeo, Up-Dong
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.123-128
    • /
    • 2000
  • To enhance in vitro plantlet regeneration efficiency of soybean through embryogenesis, the culture conditions such as material part and size of immature seed, 2,4-D, pH and solidifying agents for somatic embryogenesis were investigated. Somatic embryogenesis was induced from the immature embryo, immature cotyledon and embryonic axis explants of the immature seed on MS medium supplemented with 2.0 mg/L 2,4-D. The highest rate (up to 22.9%) of somatic embryogenesis was obtained from the immature cotyledon, following embryonic axis and the immature embryo. The rate varied with the developmental stages of seed. The maximum rate (25.4%) of embryogenesis was obtained from 3-4 mm length of the seed (after 25 days of flowering). The optimum concentration of 2,4-D for embryogenesis was 10 mg/L. The optimum pH was at 5.8 and solidifying agent for medium was better with 0.4% gelrite than with agar. For rapid multiplication of shoot tips from the germinating somatic embryos, they were cultured on MS medium containing 2 mg/L indole-3-butyyic acid (IBA) and 1 mg/L 6-benzyladenine (BA). After then somatic embryos with one and three cotyledons were transferred to the growth regulator free medium. The medium exhibited the higher rate (ca. 50%) of development than the multiplication medium.

  • PDF

In vitro Shoot Propagation Derived from Stem and Shoot Tip in Hovenia dulcis var. koreana Nakai by Plnat Growth Regulators and Light Resources (식물생장조절제 및 광원처리에 따른 헛개나무 줄기와 경정유래 신초의 기내증식)

  • Park, Mi-Young;Wang, Fengbo;Eom, Seok-Hyun;Lee, Seung-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • This study was conducted to examine effects of plant growth regulators and light resources on the formation of multiple shoot and plant regeneration of Hovenia dulcis var. koreana Nakai. Stem and shoot tip were cultured on MS medium or WPM supplemented with various plant growth regulators. At the single treatment, the highest shoot formation was obtained when stem explants were cultured on WPM supplemented with kinetin $1.0mg{\cdot}L^{-1}$. MS medium containing NAA 0.1 and TDZ $0.1mg{\cdot}L^{-1}$ gave the best results for shoot induction rate and shoot growth in combination treatments. Of the BAP and kinetin tested, BAP $0.5mg{\cdot}L^{-1}$ on WPM was found to be more effective for shoot growth from shoot tip. Under white fluorescent light treatment, shoot growth was much higher than blue, red LED treatments. Root induction from in vitro growth of plantlet was the best on WPM supplemented with $1.0mg{\cdot}L^{-1}$ IBA. The results suggest that selection of plant growth regulators and light resources could be important factor to achieve an efficient in vitro growth.

Plant Regeneration through Callus of Korean Native Seosanjong of Zingiber officinale Rosc.

  • Jo, Man-Hyun;Ham, In-Ki;Song, Nam-Hyun;Woo, In-Shik
    • Plant Resources
    • /
    • v.3 no.2
    • /
    • pp.131-134
    • /
    • 2000
  • Embryogenic callus cultures of Korean native Seosanjong of ginger(Zingiber of officinale Rosc.) were induced through stem explants taken from in vitro shoot-tip cultures. Among the four concentrations of 2,4-D tested in Murashige and Skoog medium, 0.5 and 1 mg/L of 2,4-D was most effective in inducing embryogenic callus. Leaf explants did not express any new morphogenetic response in all 2,4-D concentrations tested. Plantlets transferred to hormone-free MS medium were developed and successfully acclimatized under greenhouse.

  • PDF

Root and Shoot Formation in Explant and Callus Derived from Root and Cotyledon of GinBeng(Panun ginseng C. A. Meyer) (인삼근 및 자엽 Callus의 기관분화에 관한 연구)

  • Choe, Gwang-Tae;Kim, Myeong-Won;Sin, Hui-Seok
    • Journal of Ginseng Research
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 1981
  • Explants of mature root tissues and calli derived from root and cotyledon of Panax ginseng were cultured in vitro on Murashige and Skoog medium supplemented with 2, 4-dichlorophen-oxyacetic acid(3,4-D), naphthaleneacetic acid(NAA), benzyladenine, and gibberellic acid to assess their capacity to regenerate organs. Root formation at high percentage (46.2-61.1%) was obtained 20-30 days after culturing on media supplemented with combinations of NAA(5 mg/l) and kinetin (1 mg/l), And calli derived from cotyledon produced numerous embryoids in media($\frac{1}{2}$MS) containing 2,4-D(0.5 mg/l) and kinetin (0.5 mg/l). Reculture of these embryoids in media($\frac{1}{2}$MS) enriched with 1 mg/l of benzyladenine and 1 mg/l of gibberellic acid resulted in more plantlet regeneration.

  • PDF

High Frequency Regeneration of Plantlets from Seedling Explants of Asteracantha longifolia (L.) NEES

  • Mishra Ramya Ranjan;Behera Motilal;Kumar Deep Ratan;Panigrahi Jogeswar
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.27-35
    • /
    • 2006
  • Plantlet regeneration in Asteracantha longifolia(L.) Nees (Acanthaceae), a medicinal herb has been achieved from seedling explants on basal MS medium. Three different seedling explants including node, internode and leaf segments on used. Of these three explant, leaf explants gave better response for both callus mediated organogenesis and direct multiple shoot induction. Number of explants showing differentiation of shout buds was higher on MS media supplemented with BA compared to kinetin. MS medium fortified with BA ($2.0mgl^{-1}$) and NAA ($0.5mgl^{-1}$) was found to be most suitable for both callus mediated organogenesis and elongation of shouts. The elongated shoots were successfully routed on MS medium fortified with NAA or IBA. Among them $0.1mgl^{-1}$ NAA or $0.2mgl^{-1}$ IBA provides better response for rhizogenesis. Regenerated plantlets were successfully established in soil where 85.4% or them developed into morphologically normal and fertile plants. RAPD profiling using four decamer primers confirmed the genetic uniformity of the regenerated plantlets and substantiated the efficacy and suitability of this protocol for in vitro propagation of A. longifolia.

Effect of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of Citrullus colocynthis (L.) Schrad

  • Ramakrishna, D.;Chaitanya, G.;Suvarchala, V.;Shasthree, T.
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In the present study in vitro mutagenesis was used to study the effect of gamma irradiation and EMS on callus induction, morphogenesis and production of multiple shoots from different explants of Citrullus colocynthis (L.) Schrad. Gamma radiations (5 kR to 20 kR) and certain chemicals have been effected on plant growth developments and changes of biochemical metabolisms in plants. Murashige and Skoog (MS) medium containing with auxins such as NAA, IAA, 2,4-D (0.5 ~ 2.0 mg/l), cytokinines BAP, kn TDZ, (0.5 ~ 2.5 mg/l), L-Glutamic acid (1 ~ 2 mg/l) and Coconut milk (10 ~ 20%). After 5 weeks on induction media, explants and callus (EC) were exposed to 5 kR, 10 kR, 15 kR and 20kR, of gamma radiation and treated with 1, 2, 3, 4 and 5 mM ethyl methane sulphonate (EMS) for 30 min. The highest percentage of callusing was observed (70%) stem irradiated with 5 kR and significantly decrease in fresh and dry weight of callus in the below 4 kR doses and above 20 kR doses, there was a progressive decrease in the fresh weight and dry weights when compared to control callus. Maximum percentage of plantlet regeneration (59%) was induced from callus exposed to 15 kR gamma irradiation on MS media fortified with 2.0 mg/l 2,4-D + 2.0 mg/l BAP + 2.0 mg/l L-glutamic acid. Increase in gamma irradiation dose above 15 kR and 5 mM EMS reduced regeneration capacity of callus. Doses higher than 20 kR and 7 mM EMS was lethal to micropropagated plants of Citurullus colocynthis.