• Title/Summary/Keyword: in vitro embryo

Search Result 1,279, Processing Time 0.029 seconds

Cryopreservation of Zona Pellucida Removed and Encased Into Alian Bisected Embryo ofthe Mouse Early Embryos (생쥐 초기배의 라화 분할배와 공투명대내 수납 분할배의 동결보존)

  • 윤창현;강대진;민관식;장규태;오석두
    • Korean Journal of Animal Reproduction
    • /
    • v.15 no.2
    • /
    • pp.103-107
    • /
    • 1991
  • This study was carried out to investigate the survival rate in vitro culture after frozen-thawed to used DMSO(dimethyl sulfoxide), glycerol and ethylene glycol of cryoprotective agents at the zona pellucida removed and encased into alien bisected embryo of the mouse early embryos. The results obtained from this study were as follows : 1. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the zona pellucida removed bisected morula was 46.6%, 35.8% and 27.3%, total or mean were 36.6%, respectively. 2. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the encased into alien bisected morula was 70.6%, 65.3% and 66.4%, total or mean were 67.4%, respectively. 3. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the zona pellucida removed bisected blastocysts was 50.4%, 36.7% and 30.4%, total of mean were 39.2%, respectively. 4. The survival rate of in vitro culture after frozen-thawed to used cryoprotective agents of three kinds at the encased into alien bisected blastocysts was 71.1%, 66.7% and 63.9%, total or mean were 67.2%, respectively.

  • PDF

Effect of Alpha-Linolenic Acid on Oocyte Maturation and Embryo Development in Pigs

  • Lee, Ji-Eun;Hwangbo, Yong;Kim, Hwa-Young;Lee, Won-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The aim of this study was to determine the effect of additional alpha-linolenic acid (ALA) supplementation during in vitro maturation (IVM) and culture (IVC) on nucleic maturation and embryo development of pigs. Cumulus-oocyte complexes (COCs) were incubated in IVM medium containing different concentration of ALA (25, 50 and $100{\mu}M$) for 44 h. After in vitro maturation, nuclear maturation of oocytes were evaluated by aceto-orcein stain. Mature oocytes with $50{\mu}M$ ALA were fertilized and cultured in IVC medium with ALA (25, 50 and $100{\mu}M$) during early-embryogenesis (48 hours after fertilization). Then, embryos were cultured with $25{\mu}M$ ALA during early embryogenesis and/or late embryogenesis (120 hours after early-embryogenesis). In results, oocyte maturation were significantly increased by $50{\mu}M$ ALA treatment groups compared with control groups (p<0.05). Treatment of $25{\mu}M$ ALA during early-embryogenesis enhanced cleavage rate of embryo compared with other groups (p<0.05), whereas formation and total cell number of blastocyst had no significant difference. Similarly, cleavage rate of embryos were increased by $25{\mu}M$ ALA supplement during early- or late-embryogenesis than ALA treatment both stage of embryogenesis (p<0.05), but did not influence to blastocyst formation. Interestingly, total cell number of blastocyst were enhanced in ALA treatment group during early-embryogenesis. These findings indicated that ALA supplement enhance the nuclear maturation of oocyte and embryo development, however, excessive ALA could negatively influence. Therefore, we suggest that ALA is used for improvement of in vitro production of mammalian embryo and further study regarding with functional mechanism of ALA is needed.

Post-Thaw Cryosurvival of Bovine Embryos Produced In Vitro and In Vivo after Controlled Freezing

  • Cho, Sang-Rae;Choi, Sun-Ho;Choe, Chang-Yong;Lee, Poong-Yeon;Son, Jun-Kyu;Kim, Jae-Bum;Kim, Sung-Jae;Kim, Hyun-Jong;Shin, Seung-Oh;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.24 no.4
    • /
    • pp.253-257
    • /
    • 2009
  • To enhance the embryo preservation technology and better application of embryo transfer technique to the field (dairy science or animal reproduction. etc.), we examined the viabilities of bovine embryos produced in vitro and in vivo after cryopreservation according to their developmental stage and thawing temperature. Bovine embryos from in vivo/vitro fertilization (Hanwoo) were examined at day 7, 8, and 9. Survival rates and total cell numbers of in vivo fertilized embryos were as follows: morulae 68.8% and $67\;{\pm}\;6.0$; blastocysts 80.5% and $120\;{\pm}\;10$; expanded blastocysts 77.4% and $138\;{\pm}\;9.7$, respectively. Rates of embryo development for blastocysts and expanded blastocysts after thawing were significantly higher than that of morula stage embryos (p<0.05). While survival rates of in vitro fertilized embryos according to developmental stage showed no significant difference among groups (morula 67.9%; blastocyst 74.3%; and expanded blastocyst 79.4%), total cell numbers were significantly lower than those of other groups (morula $64\;{\pm}\;5.9$; blastocyst $116\;{\pm}\;8.7$; and expanded blastocyst $135\;{\pm}\;9.1$) For the viability according to thawing temperature, survival rate was higher in $37^{\circ}C$.

Sodium hypochlorite treatment and light-emitting diode (LED) irradiation effect on in vitro germination of Oreorchis patens (Lindl.) Lindl

  • Bae, Kee Hwa;Oh, Kyoung Hee;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • In this study, we investigated the effects of sodium hypochlorite (NaOCl) and red or blue light-emitting diode (LED) light on embryo swelling and germination of Oreorchis patens (Lindl.) Lindl. A method for determining the swelling and protocorm formation in O. patens seeds through in vitro examination of immature seeds was established. NaOCl treatment of immature seeds was found to significantly enhance the extent of embryo swelling and protocorm formation in immature zygote embryos compared to those in the untreated controls. Additionally, the effects of white fluorescent light, and red and blue LED lights on embryo swelling and protocorm formation in in vitro cultured seeds were examined and compared to the conditions with or without NaOCl treatment. The most suitable light for embryo swelling and protocorm formation was the red LED light.

In vitro Production of Bovine Embryos - A Review

  • Rehman, N.U.;Sarwar, M.;Samad, H.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1342-1351
    • /
    • 2001
  • Over the years, the embryo transfer industry has grown from the simple collection & transfer of embryos into an advanced field of embryo biotechnology. Currently a large demand exists for bovine oocytes and early embryos in both research and commercial settings. Bovine embryos can now be produced in-vitro. Primary oocytes collected from antral follicles of abattoir - obtained ovaries can be induced to undergo the maturation process. In-vitor maturation system, however must ensure that the resulting oocyte is capable of undergoing normal fertilization and yields a zygote competent of developing to term after embryo transfer. Sperm preparation for IVF has improved with the use of heparine. The use of co-culture system has proved beneficial in circumventing the developmental block in IVM/IVF bovine embryos.

Studies of In Vitro Embryo Culture of Guppy (Poecilia reticulata)

  • Liu, LiLi;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • Different with other fishes, the guppies (Poecilia reticulata) is ovoviviparity, which retain their fertilized eggs within the follicle throughout gestation. The synchronously growing diplotene oocytes store nutrients in droplets and yolk, before their maturation and fertilization. The lecithotrophic strategy of development entails the provisioning of embryos with resources from the maternal yolk deposit rather than from a placenta, it allows the extracorporeal culture of guppy embryo. Studies on their early development of live bearers like the guppy including lineage tracing and genetic manipulations, have been limited. Therefore, to optimize conditions of embryo in vitro culture, explanted embryos from pregnant females were incubated in embryo medium (L-15 medium, supplemented with 5, 10, 15, 20% fetal bovine serum, respectively). We investigated whether the contents of FBS in vitro culture medium impact the development of embryos, and whether they would hatch in vitro. Our study found that in 5% of FBS of the medium, although embryos developed significantly slower in vitro than in the ovary, it was impossible to exactly quantify the developmental delay in culture, due to the obvious spread in developmental stage within each batch of eggs, and embryos can only be maintained until the early-eyed. And although in culture with 20% FBS the embryos can sustain rapid development of early stage, but cannot be cultured for the entire period of their embryonic development and ultimately died. In the medium with 10% and 15% FBS, the embryos seems well developed, even some can continue to grow after follicle ruptures until it can be fed. We also observed that embryonic in these two culture conditions were significantly different in development speed, in 15% it is faster than 10%. But 10% FBS appears to be more optimizing condition than 15% one on development process of embryos and survival rate to larvae stage.

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo;Park, Jin-Kyu;Choi, Kwang-Hwan;Son, Hye-Young;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1565-1572
    • /
    • 2015
  • Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.

Cell transformation of bisphenol A in Syrian hamster embryo cells and mouse embryo BalB/c 3T3 cells (Syrian hamster embryo 세포와 mouse embryo BalB/c 3T3 세포에서의 bisphenol A의 세포 형질전환 연구)

  • 김종원;한의식;박미선;엄미옥;전혜승;민수진;김인숙;정해관;심웅섭
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • To identify nongenotoxic carcinogen determined as negative by ICH guideline-recommended standard genotoxicity test battery; Ames test, chromosome aberration assay, mouse lymphoma $tk^{+/-}$ assay, in vivo micronucleus assay, we picked bisphenol A as a model compound. In this study, we applied in vitro BalB/c 3T3 cell transformation assay and Syrian hamster embryo (SHE) cell transfarmation assay. Bisphenol A was treated upto $769.2 ug/m{\ell}$ in BalB/c 3T3 cells and upto $125 ug/m{\ell}$ in SHE cells. bisphenol A didn't induced morphological transformation both with one stage treatment protocol and with two stage treatment protocol. But, treated far 48 hr, Bisphenol A induced morphological transformation significantly in SHE cells.

  • PDF

Recent Development in Embryo Technology in Pigs - Review -

  • Niwa, K.;Funahashi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.966-975
    • /
    • 1999
  • Technologies on preimplantation porcine embryos have been developed quickly and significantly. Successful development of systems for culture of porcine zygotes to the blastocyst stage has made it possible to utilize follicular oocytes for in vitro production of embryos and thus stimulated research on various embryo technologies. Recent technological development of embryo cryopreservation, separation of X- and Y-bearing spermatozoa and non-surgical embryo transfer has also made it easy to utilize in vivo- and in vitro-produced embryos for artificial manipulation to produce clones and transgenic pigs. Further progress in overcoming various problems associated with each embryo technology will result in acceptable efficiency to utilize porcine embryos with a high or increased quality. Combining these technologies will accelerate further expansion of the swine industry not only for meat production but also for the production of therapeutic recombinant proteins and xonografts.

Antioxidants as alleviating agents of in-vitro embryo production oxidative stress

  • Areeg Almubarak;Il-Jeoung Yu;Yubyeol Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.47-53
    • /
    • 2023
  • Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.