Browse > Article
http://dx.doi.org/10.5713/ajas.15.0462

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts  

Lee, Sang-Goo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
Park, Jin-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
Choi, Kwang-Hwan (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
Son, Hye-Young (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.11, 2015 , pp. 1565-1572 More about this Journal
Abstract
Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.
Keywords
Embryo Aggregation; Embryonic Stem Cells; In vitro-produced Embryos; Embryo Quality; Derivation Efficiency; Pig;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abeydeera, L. R. and B. N. Day. 1997. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol. Reprod. 57:729-734.   DOI   ScienceOn
2 Alberio, R., N. Croxall, and C. Allegrucci. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19:1627-1636.   DOI   ScienceOn
3 Bavister, B. 2004. The role of animal studies in supporting human assisted reproductive technology. Reprod. Fertil. Dev. 16:719-728.   DOI   ScienceOn
4 Boediono, A., M. Ooe, M. Yamamoto, M. Takagi, S. Saha, and T. Suzuki. 1993. Production of chimeric calves by aggregation of in vitro fertilized bovine embryos without zonae pellucidae. Theriogenology 40:1221-1230.   DOI   ScienceOn
5 Boediono, A., T. Suzuki, L. Y. Li, and R. A. Godke. 1999. Offspring born from chimeras reconstructed from pathenogenetic and in vitro fertilized embryos. Mol. Reprod. Dev. 53:159-170.   DOI
6 Boiani, M., S. Eckardt, N. A. Leu, H. R. Scholer, and K. J. McLaughlin. 2003. Pluripotency deficit in clone overcome clone-clone aggregation : epigenetic complementation? EMBO J. 22:5304-5312.   DOI   ScienceOn
7 Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655.   DOI   ScienceOn
8 Davis, D. L. 1985. Culture and storage of pig embryos. J. Reprod. Fertil. Suppl. 33:115-124.
9 de la Fuente, R. and W. A. King. 1997. Use of a chemically defined system for the direct comparison of inner cell mass and trophectoderm distribution in murine, porcine and bovine embryos. Zygote 5:309-320.   DOI
10 Emerson, M., A. R. Travis, R. Bathgate, T. Stojanov, D. I. Cook, E. Harding, D. P. Lu, and C. O'Neill. 2000. Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. The J. Biol. Chem. 275:21905-21913.   DOI   ScienceOn
11 Friel, R., S. v. d. Sar and P. J. Mee. 2005. Embryonic stem cells: Understanding their history, cell biology and signalling. Adv. Drug Deliv. Rev. 57:1894-1903.   DOI   ScienceOn
12 Keefer, C. L., D. Pant, L. Blomberg, and N. C. Talbot. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:147-168.   DOI   ScienceOn
13 Lee, S. G., C. H. Park, D. H. Choi, H. S. Kim, H. H. Ka, and C. K. Lee. 2007. In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Mol. Reprod. Dev. 74:1436-1445.   DOI   ScienceOn
14 Kim, H. S., G. S. Lee, S. H. Hyun, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2004. Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61:1381-1393.   DOI   ScienceOn
15 Kim, S., J. H. Kim, E. Lee, Y. W. Jeong, M. S. Hossein, S. M. Park, S. W. Park, J. Y. Lee, Y. I. Jeong, H. S. Kim, Y. W. Kim, S. H. Hyun and W. S. Hwang. 2010. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18:93-101.   DOI   ScienceOn
16 Lee, G. S., H. S. Kim, S. H. Hyun, D. Y. Kim, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2003. Improved developmental competence of cloned porcine embryos with different energy supplements and chemical activation. Mol. Reprod. Dev. 66:17-23.   DOI   ScienceOn
17 Li, M., Y. H. Li, Y. Hou, X. F. Sun, Q. Sun, and W. H. Wang. 2004. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12:43-48.   DOI   ScienceOn
18 Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. Okuda, R. Matoba, A. A. Sharov, M. S. Ko, and H. Niwa. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9:625-635.   DOI   ScienceOn
19 Nagy, A. and J. Rossant. 2001. Chimaeras and mosaics for dissecting complex mutant phenotypes. Int. J. Dev. Biol. 45:577-582.
20 Nagy, A., J. Rossant, R. Nagy, W. Abramow-Newerly, and J. C. Roder. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 90:8424-8428.   DOI
21 Neganova, I. E., G. G. Sekirina, and U. Eichenlaub-Ritter. 2000. Surface-expressed E-cadherin, and mitocondrial and microtuble distrbution in rescue of mouse embryos from 2- cell block by aggregation. Mol. Hum. Reprod. 6:454-464.   DOI   ScienceOn
22 Park, J. K., H. S. Kim, K. J. Uh, K. H. Choi, H. M. Kim, T. Lee, B. C. Yang, H. J. Kim, H. H. Ka, H. Kim, and C. K. Lee. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in PloS one 8:e52481.   DOI   ScienceOn
23 Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
24 Pickering, S. J., P. R. Braude, M. Patel, C. J. Burns, J. Trussler, V. Bolton, and S. Minger. 2003. Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod. Biomed. Online 7:353-364.   DOI   ScienceOn
25 Talbot, N. C. and A. Blomberg Le. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4:235-254.   DOI   ScienceOn
26 Tang, P. C. and J. D. West. 2000. The effects of embryo stage and cell number on the composition of mouse aggregation chimaeras. Zygote 8:235-243.   DOI   ScienceOn
27 Vassiliev, I., S. Vassilieva, L. F. Beebe, S. J. Harrison, S. M. McIlfatrick, and M. B. Nottle. 2010. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell. Reprogram. 12:223-230.   DOI   ScienceOn
28 Wood, S. A., N. D. Allen, J. Rossant, A. Auerbach, and A. Nagy. 1993. Non-injection methods for the production of embryonic stem cell-embryo chimeras. Nature 365:87-89.   DOI   ScienceOn
29 Zhou, W., T. Xiang, S. Walker, R. V. Abruzzese, E. Hwang, V. Farrar, B. Findeisen, S. Sadeghieh, F. Arenivas, S. H. Chen, and I. Polejaeva. 2008. Aggregation of bovine cloned embryos at the four-cell stage stimulated gene expression and in vitro embryo development. Mol. Reprod. Dev. 75:1281-1289.   DOI   ScienceOn
30 Yoshioka, K., C. Suzuki, A. Tanaka, I. M. Anas, and S. Iwamura. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66:112-119.   DOI   ScienceOn