• Title/Summary/Keyword: in vitro cancer research

Search Result 689, Processing Time 0.023 seconds

Assessment of Discoidal Polymeric Nanoconstructs as a Drug Carrier (약물 운반체로서의 폴리머 디스크 나노 입자에 대한 평가)

  • BAE, J.Y.;OH, E.S.;AHN, H.J.;KEY, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Chemotherapy, radiation therapy, and surgery are major methods to treat cancer. However, current cancer treatments report severe side effects and high recurrences. Recent studies about engineering nanoparticles as a drug carrier suggest possibilities in terms of specific targeting and spatiotemporal release of drugs. While many nanoparticles demonstrate lower toxicity and better targeting results than free drugs, they still need to improve their performance dramatically in terms of targeting accuracy, immune responses, and non-specific accumulation at organs. One possible way to overcome the challenges is to make precisely controlled nanoparticles with respect to size, shape, surface properties, and mechanical stiffness. Here, we demonstrate $500{\times}200nm$ discoidal polymeric nanoconstructs (DPNs) as a drug delivery carrier. DPNs were prepared by using a top-down fabrication method that we previously reported to control shape as well as size. Moreover, DPNs have multiple payloads, poly lactic-co-glycolic acid (PLGA), polyethylene glycol (PEG), lipid-Rhodamine B dye (RhB) and Salinomycin. In this study, we demonstrated a potential of DPNs as a drug carrier to treat cancer.

Effect of Bupleuri Radix on Inflammatory Cytokine Secretion to HMC and Mouse Immmune Cells (시호(柴胡)가 MC 및 Mouse의 염증관련 cytokine 분비에 미치는 영향)

  • Choi, Sung-Woo;Kang, Hee;Shim, Bum-Sang;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.150-157
    • /
    • 2009
  • This research was performed in order to investigate the anti-inflammatory effects of Bupleuri Radix(BR) on the Immune response in vitro. Cellular proliferation and cytokine production were measured in mast cells or mouse B cells or CD4 Th cells. BR water extract inhibited the secretions of TNF-$\alpha$ and IL-6 in PMA/A23187 stimulated HMC-1 cells. It increased proliferation but did not affect the expressions of CD69 or CD23 in rIL-4/anti-CD40 activated S cells. BR reduced surface IgE expression and secreted IgE but increased the production of IL-4, IFN-$\gamma$ and IgG1 in the same cells. BR caused an increase in proliferation in anti-CD3/anti-CD28 stimulated CD4 Th cells but it did not affect the differentiation of Th1 or Th2 cells. However, IL-2 was increased in BR treated Th2 cells. Considering the above-mentioned results, BR can be applied to a broad range of anti-inflammatory reactions, but our data suggest that it will not be likely to exert any effects on type 1 allergic response.

Effect of Deep Sea Water on Phase I, Phase II and Ornithine Decarboxylase. (Phase I, phase II 효소 및 ornithine decarboxylase에 미치는 해양심층수의 영향)

  • Shon, Yun-Hee;Kim, Mee-Kyung;Jang, Jung-Sun;Jung, Eun-Jung;Nam, Kyung-Soo
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.381-386
    • /
    • 2008
  • Deep sea water was tested for cancer chemopreventive activity by measuring the activities of ${\beta}-$ naphthoflavone $({\beta}-NF)-induced$ cytochrome P 450 1A2 (CYP 1A2), quinone reductase (QR) and glutathione-S-transferase (GST), glutathione (GSH) levels, and ornithine decarboxylase (ODC) activity. The in vitro incubation of rat liver microsome with deep sea water (a hardness range of $100{\sim}1,000$) showed a hardness-dependent inhibition of CYP 1A2 activity. QR and GST activities were induced about $1.1{\sim}1.2$ fold with the treatment of deep sea water in murine hepatoma Hepa 1clc7 cells. In addition GSH levels were increased $1.3{\sim}1.4$ fold in a hardness range of $100{\sim}1,000$. The deep sea water showed 20.3 and 35.0% inhibition of 12-O- tetradecanoylphorbol-13-a-cetate (TPA)-induced ODC activity at hardness 800 and 1,000, respectively. Therefore, deep sea water is worth further investigation with respect to cancer chemoprevention or therapy.

Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway

  • Han, Na-Ra;Ko, Seong-Gyu;Moon, Phil-Dong;Park, Hi-Joon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.610-616
    • /
    • 2021
  • Background: Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods: We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results: Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion: Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.

Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts - Asafoetida reverses senescence in fibroblasts -

  • Moghadam, Farshad Homayouni;Mesbah-Ardakani, Mehrnaz;Nasr-Esfahani, Mohammad Hossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.213-219
    • /
    • 2017
  • Objectives: Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods: Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to $H_2O_2$, and the incidence of senescence was recognized by using cytochemical staining for the activity of ${\beta}$-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results: Our experiments show that asafetida in concentrations ranging from $5{\times}10^{-8}$ to $10^{-7}g/mL$ has revitalizing effects on senescent fibroblasts and significantly reduces the ${\beta}$-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than $5{\times}10^{-7}g/mL$, asafetida is toxic for cells and induces cell death. Conclusion: The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.

Protective Effects of Butylated hydroxyansiole(BHA) Pretreatment against Aflatoxin $B_1$ Inducible Hepatocellular Abnormalities (Aflatoxin $B_1$으로 유발되는 흰쥐 간세포의 미세구조 변화 : Butylated hydroxyanisole(BHA) 전처리에 의한 보호 효과)

  • Choi, Chee-Yong;Choe, Rim-Soon;Cha, Young-Nam
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.63-76
    • /
    • 1991
  • Butylated hrdroxyanisole(BHA), a widely used food additive phenolic antioxidant, is known to inhibit cancer formations inducible with a wide variety of chemical carcinogens including aflatoxin $B_1(AFB_1)$. Thus, in the present study morphological characteristics underlying the hepatoprotective effects of BHA against $AFB_1$ inducible ultrastructural changes of hepatocytes have been examined. The obtained results are as follows : 1 . Livers obtained from rats treated with $AFB_1$ in vivo have been examined with transmission electron microscope. Among the many hepatocellular structural aberrations induced by $AFB_1$ treatment, the nuclear chromatins were found to be distributed irregularly('cap formation') and the nuclear membrane was found to be partially segregated. Furthermore, there were many lipid droplets, hyperplasia of smooth endoplasmic reticulum, dialated rough endoplasmic reticulum and, lysosomes arrested at various stages of its development. 2. Also, when $AFB_1$ was given in vitro to hepatocytes which have been isolated from untreated normal rats and examined under scanning electron microscope, there were much 'blobbing' phenomena resulting from cytoskeletal disturbances. 3. However, in the liver obtained from rats pretreated with BHA and then give the $AFB_1$, the observed morphological aberrations were in much reduced extent. Similarly, the BHA-hepatocytes had much decreased severity in the $AFB_1$ inducible blob formations.

  • PDF

6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis

  • Kim, Eun-Yeong;Jin, Bo-Ram;Chung, Tae-Wook;Bae, Sung-Jin;Park, Hyerin;Ryu, Dongryeol;Jin, Ling;An, Hyo-Jin;Ha, Ki-Tae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.560-565
    • /
    • 2019
  • Benign prostatic hyperplasia (BPH), a common disease in elderly males, is accompanied by non-malignant growth of prostate tissues, subsequently causing hypoxia and angiogenesis. Although VEGF-related angiogenesis is one of the therapeutic targets of prostate cancer, there is no previous study targeting angiogenesis for treatment of BPH. Dihydrotestosterone (DHT)-induced expressions of vascular endothelial growth factor (VEGF) in prostate epithelial RWPE-1 cells and human umbilical vascular endothelial cells (HUVECs). Conditioned media (CM) from DHT-treated RWPE-1 cells were transferred to HUVECs. Then, 6SL inhibited proliferation, VEGFR-2 activation, and tube formation of HUVECs transferred with CM from DHT-treated RWPE-1 cells. In the rat BPH model, 6SL reduced prostate weight, size, and thickness of the prostate tissue. Formation of vessels in prostatic tissues were also reduced with 6SL treatment. We found that 6SL has an ameliorative effect on in vitro and in vivo the BPH model via inhibition of VEGFR-2 activation and subsequent angiogenesis. These results suggest that 6SL might be a candidate for development of novel BPH drugs.

Suppression of Helicobacter pylori-induced Angiogenesis by a Gastric Proton Pump Inhibitor (Proton Pump Inhibitor에 의한 Helicobacter pylori의 혈관형성 억제효과)

  • Jin, Sung-Ho;Lee, Hwa-Young;Kim, Dong-Kyu;Cho, Yong-Kwan;Hahm, Ki-Baik;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.5 no.3 s.19
    • /
    • pp.191-199
    • /
    • 2005
  • Background: Though infections of Helicobacter pylori (H. pylori) are closely associated with activation of host angiogenesis, the underlying mechanisms, as well as the strategy for its prevention, have not been identified. Here, we investigated a causal role of H. pylori infection in angiogenesis of gastric mucosa and a potent inhibitory effect of a gastric proton pump inhibitor (PPI) on the gastropathy. Materials and Methods: A comparative analysis of CD 34 expression in tissues obtained from 20 H. pylori-associated gastritis and 18 H. pylori-negative gastritis patients was performed. Expression of $HIF-1{\alpha}$ and VEGF were tested by using RT-PCR. To evaluate the direct effect of H. pylori infection on differentiation of endothelial HUVEC cells, we carried out an in vitro angiogenesis assay. Results: H. pyfori-associated gastritis tissues showed significantly higher density of $CD34^+$ blood vessels than did H. pylori-negative gastritis tissues, and the levels were well correlated with expressions of $HIF-1{\alpha}$. Conditioned media from H. pylori-infected gastric mucosal cells stimulated a tubular formation of HUVEC cells. We also found a significant inhibitory effect of PPI, an agent frequently used for H. pylori eradication, on H. pylori-induced angiogenesis. This drug effectively inhibited the phosphorylation of MAP kinase ERK1/2, which is a principal signal for H. pylori-induced angiogenesis. Conclusion: The fact that PPls can down-regulate H. pylori-induced angiogenesis suggest that anti-angiogenic treatment using PPI may be a preventive approach for H. pylori-associated carcinogenesis.

  • PDF

Anti-Obese Effects of Ginseng/Ginsenosides : A Literature Review from 1983 to 2012 (인삼과 진세노사이드의 항비만 효과에 대한 문헌 고찰)

  • Choi, Munji;An, Jinpyo;Kim, Ae Jung;Lee, Myoungsook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.3
    • /
    • pp.335-350
    • /
    • 2014
  • Compared to the large numbers of studies on the diabetes, hyperlipidemia and cancer therpeutic effects of ginseng, the anti-obese effect and mechanisms of ginsengs have not been studied as much. To determine the effects of ginseng on obesity, 14 keywords (ginseng, ginsenoside, obesity, weight, fat, diet, overeat, appetite, lipid, 3T3-L1, adipocyte, food intake, adipogenesis and lipolysis) were combined in searching a database. Fifty-six articles published from 1983 to 2012 as well as 656 patents registered until Aug $17^{th}$, 2012, were screened for anti-obese effects of ginseng. In the classification of experimental methods, 16 papers on 3T3-L1 cells, 38 papers on animals and three papers on human were reviewed. In terms of obese mechanisms of action, the most commonly used biomarkers were in order of lipid profiles > weight change > blood glucose > adipocytokine. Most ginseng studies on obesity focused on AMPK, $PPAR{\gamma}$, GLUT-4, PI3K and SREBP-1. Korean white ginseng extracts and Re repressed the lipogenesis genes such as PPARc2, SREBP-1c, LPL, FAS and DGAT1. However, ginseng or ginsenosides, PD (Rb1) and PT (Re), showed different or contradictory results. Water and ethanol extraction of ginseng showed contradictory effects on the secretion of inflammatory cytokines, wheras IL-6 was repressed by ethanol extracts and TNF-${\alpha}$ repressed by Re in vitro. Based on the literature, further studies on anti-obese mechanisms of ginseng, such as the inflammation-related obesity or cross signals between the adipocytes and the environments, are needed, instead of more studies on its hypolipidemic and hypoglycemic effects.

Dihydroartemisinin inhibits HepG2.2.15 proliferation by inducing cellular senescence and autophagy

  • Zou, Jiang;Ma, Qiang;Sun, Ru;Cai, Jiajing;Liao, Hebin;Xu, Lei;Xia, Jingruo;Huang, Guangcheng;Yao, Lihua;Cai, Yan;Zhong, Xiaowu;Guo, Xiaolan
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.520-525
    • /
    • 2019
  • Dihydroartemisinin (DHA) has been reported to possess anti-cancer activity against many cancers. However, the pharmacologic effect of DHA on HBV-positive hepatocellular carcinoma (HCC) remains unknown. Thus, the objective of the present study was to determine whether DHA could inhibit the proliferation of HepG2.2.15 cells and uncover the underlying mechanisms involved in the effect of DHA on HepG2.2.15 cells. We found that DHA effectively inhibited HepG2.2.15 HCC cell proliferation both in vivo and in vitro. DHA also reduced the migration and tumorigenicity capacity of HepG2.2.15 cells. Regarding the underlying mechanisms, results showed that DHA induced cellular senescence by up-regulating expression levels of proteins such as p-ATM, p-ATR, ${\gamma}-H_2AX$, P53, and P21 involved in DNA damage response. DHA also induced autophagy (green LC3 puncta gathered together and LC3II/LC3I ratio increased through AKT-mTOR pathway suppression). Results also revealed that DHA-induced autophagy was not linked to senescence or cell death. TPP1 (telomere shelterin) overexpression could not rescue DHA-induced anticancer activity (cell proliferation). Moreover, DHA down-regulated TPP1 expression. Gene knockdown of TPP1 caused similar phenotypes and mechanisms as DHA induced phenotypes and mechanisms in HepG2.2.15 cells. These results demonstrate that DHA might inhibit HepG2.2.15 cells proliferation through inducing cellular senescence and autophagy.