• Title/Summary/Keyword: in vitro cancer research

Search Result 689, Processing Time 0.035 seconds

In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia

  • Li, Chunmei;Wang, Myeong-Hyeon
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In Asia, various medicinal plants have been used as the primary sources in the health care regimen for thousands of years. In recent decades, various studies have investigated the biological activity and potential medicinal value of the medicinal plants. In this study, 100 methanol extracts from 98 plant species were evaluated for their biological activities. MATERIALS/METHODS: The research properties, including 1,1-diphenyl-2-pic-rylhydrazyl (DPPH) radical scavenging activity, ${\alpha}$-glucosidase and ${\alpha}$-tyrosinase inhibitory effects, anti-inflammatory activity, and anticancer activity were evaluated for the selected extracts. RESULTS: Fifteen of the extracts scavenged more than 90% of the DPPH radical. Among the extracts, approximately 20 extracts showed a strong inhibitory effect on ${\alpha}$-glucosidase, while most had no effect on ${\alpha}$-tyrosinase. In addition, 52% of the extracts showed low toxicity to normal cells, and parts of the extracts exhibited high anti-inflammatory and anticancer activities on the murine macrophage cell (RAW 264.7) and human colon cancer cell (HT-29) lines, respectively. CONCLUSIONS: Our findings may contribute to further nutrition and pharmacological studies. Detailed investigations of the outstanding samples are currently underway.

Doxorubicin·Hydrochloride/Cisplatin-Loaded Hydrogel/Nanosized (2-Hydroxypropyl)-Beta-Cyclodextrin Local Drug-Delivery System for Osteosarcoma Treatment In Vivo

  • Sun Jung Yoon;Young Jae Moon;Heung Jae Chun;Dae Hyeok Yang
    • Nanomaterials
    • /
    • v.9 no.12
    • /
    • pp.1652-1663
    • /
    • 2019
  • Osteosarcoma (OSA) is a difficult cancer to treat due to its tendency for relapse and metastasis; advanced methods are therefore required for OSA treatment. In this study, we prepared a local drug-delivery system for OSA treatment based on doxorubicin·hydrochloride (DOX·HCl)/cisplatin (CP)-loaded visible light-cured glycol chitosan (GC) hydrogel/(2-hydroxypropyl)-beta-cyclodextrin (GDHCP), and compared its therapeutic efficiency with that of DOX·HCl- and CP-loaded GC hydrogels (GD and GHCP). Because of diffusion driven by concentration gradients in the swollen matrix, the three hydrogels showed sustained releases of DOX·HCl and CP over 7 days, along with initial 3-h bursts. Results of in vitro cell viability and in vivo animal testing revealed that GDHCP had a stronger anticancer effect than GD and GHCP even though there were no significant differences. Body weight measurement and histological evaluations demonstrated that the drug-loaded GC hydrogels had biocompatibility without cardiotoxicity or nephrotoxicity. These results suggested that GDHCP could be a good platform as a local drug-delivery system for clinical use in OSA treatment.

Nutritional Component and Anticancer Properties of Various Extracts from Haesongi Mushroom (Hypsizigus marmoreus) (해송이버섯(Hypsizigus marmoreus)의 영양성분과 추출용매에 따른 암세포 생장억제 효과)

  • Jung, Eun-Bong;Jo, Jin-Ho;Cho, Seung-Mock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1395-1400
    • /
    • 2008
  • This study was aimed to analyze the nutritional components and anticancer properties of Haesongi mushroom (Hypsizigus marmoreus), which has been recently available in Korea, to estimate its nutritional and functional values. Fruit body of Haesongi mushroom was investigated for its proximate components and mineral contents. Its water and ethanol extracts were compared for nutritional components such as $\beta$-glucan, protein, and total sugar. Anticancer effects of both extracts were measured against human cancer cell lines in vitro. This mushroom contained high protein (22.63%), total dietary fiber (30.80%), and K (3383.3 mg/100 g). The water extract contained more nutritional components such as $\beta$-glucan (9.32 mg/g), protein (17.71%), and total sugar (39.93%), compared with the ethanol extract. Moreover the extraction yield of the water extract was higher than the ethanol extract. The growth inhibitory effects of the water extract (5 mg/mL) on AGS, HepG2, and SW480 human cancer cells were 90.61, 75.43, and 58.49%, respectively. However, the ethanol extract showed 81.79, 49.90, and 25.71% growth inhibition, respectively. In this study, it is demonstrated that water is a more efficient solvent than ethanol for extracting nutritional and functional components from Haesongi mushroom.

Perspectives for Ginsenosides in Models of Parkinson's Disease

  • Wei-Ming, Lin;Gille, Gabriele;Radad, Khaled;Rausch, Wolf-Dieter
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2007
  • Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as traditional medicine in Korea, China and Japan for thousands of years and now is a popular and worldwide natural medicine. The active principles of ginseng are ginsenosides which are also called ginseng saponins. Traditionally ginseng has been used primarily as a tonic to invigorate weak body functions and help the restoration of homeostasis. Current in vivo and in vitro studies demonstrate its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Moreover, recent research indicates that some of ginseng's active ingredients exert beneficial actions on aging and neurodegenerative disorders such as Parkinson´s disease. Essentially, antioxidant, antiinflammatory, anti-apoptotic and immunostimulant activities are mostly underlying the postulated ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms which involve decreasing nitric oxide, scavenging of free radicals and counteracting excitotoxicity. This paper focuses on own and other neuroprotective data on ginseng for dopaminergic neurons and intends to show aspects where neuroprotection e.g. by ginsenosides, additionally or preceding standard Parkinson therapy, could come about as a valuable contribution to slow neurodegenerative processes.

Biological Activities of Seven Melania Snails in Korea (국내산 7종 다슬기 추출물의 생리활성 특성 비교)

  • Kim, Yeon-Kye;Moon, Ho-Sung;Lee, Moon-Hee;Park, Mi-Ju;Lim, Chi-Won;Park, Hee-Yeon;Park, Jin-Il;Yoon, Ho-Dong;Kim, Dae-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.434-441
    • /
    • 2009
  • This study was conducted to compare the biological activities of 7 melania snails from the family Pleuroceridae (Semisulcospira coreana, Koreanomelania nodifila, Semisulcospira forticosta, Koreoleptoxis globus ovalis, Semisulcospira libertina, Semisulcospira tegulata and Semisulcospira gottschei) in Korea. Among the 7 species, S. coreana, Korean. nodifila, S. forticosta and S. gottschei showed over 80% cytotoxicities on three cancer cell lines (SNU-1, A549 and Hep 3B) compared to the non-treatment, whereas S. libertina and S. tegulata showed almost no growth inhibition activities on the same cancer cell lines. In relation to ACE inhibition activity, only S. coreana, Korean. nodifila, and S. forticosta showed over 60% ACE inhibition activities, whereas other melania snails exhibited inhibition activities of lower than 25%. DPPH radical scavenging activities were also determined, and used to categories melania snails into three groups based on Duncan's multiple range test at P<0.05. The amount of TNF-${\alpha}$ produced by in vitro mouse peritoneal macrophage was determined according to bioactivity on L-929 cells. Three melania snails, S. coreana, Korean. nodifila and S. gottschei, exhibited 95.2%, 89.7% and 93.7% cell death(%) on L-929 cells, respectively. Glucose-6-phosphate dehydrogenase inhibitory activity was also obtained in the extract of S. coreana (31.9%) and Korean. nodifila (28.1%), showing that these extracts can be used as supplemental dietary health foods. In conclusion, we believe that the extracts of melania snails should be given due consideration in functional health food development.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

Estrogen Receptor Is Activated by Korean Red Ginseng In Vitro but Not In Vivo

  • Shim, Myeong-Kuk;Lee, Young-Joo
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ER${\alpha}$ and ER${\beta}$. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ER${\alpha}$. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-${\beta}$-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses.

Investigation into the Efficacy of Val-SN-38, a Valine-Ester Prodrug of the Anti-Cancer Agent SN-38

  • Kwak, Eun-Young;Choi, Min-Koo;Yang, Su-Geun;Shim, Chang-Koo;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.326-331
    • /
    • 2012
  • We recently reported that Val-SN-38, a novel valine ester prodrug of SN-38, had greatly improved the intracellular accumulation of SN-38 in MCF-7 cell line, probably through enhanced uptake via amino acid transporters. In the present study, the efficacy of Val-SN-38 was further investigated both in vitro and in vivo. It was found that the in vitro cytotoxic effect of Val-SN-38 was similar to that of SN-38. Moreover, Val-SN-38 exhibited an equal potency to that of SN-38 in survival experiments in vivo. Because these results seemed to be contrary to the previous finding, further investigation was performed to find out the underlying cause of the contradiction. As only the lactone form is known to have cytotoxic activity, the proportion of lactone in Val-SN-38 and SN-38 was determined, but no differences were found. However, it turned out that Val-SN-38 had poor stability compared with SN-38, which resulted in a decrease in beneficial efficacy for Val-SN-38. Overall, the present study showed that a valine-added prodrug approach could be advantageous provided that the stability of the compound can be ensured. We believe this is a noteworthy study that unravels the discrepancy between intracellular accumulation and efficacy of valine-added prodrug.

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.