• 제목/요약/키워드: in vitro activation

검색결과 1,073건 처리시간 0.024초

The Suppression of Maturational Competence by Streptomycin during In vitro Maturation of Goat Follicular Oocytes

  • Kang, Jae Ku;Chang, Suk Min;Naruse, Kenji;Han, Jeung Whan;Park, Chang Sik;Jin, Dong Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권8호
    • /
    • pp.1076-1079
    • /
    • 2004
  • Antibiotics are common additives in culture media during in vitro embryo development, but their effects on oocyte maturation in vitro have not been tested. The effects of penicillin, streptomycin and gentamicin on the maturational competence and subsequent development potential of goat follicular oocytes were examined after parthenogenetic activation in vitro. Maturation rates at 24 h after in vitro maturation, and parthenogenetic development at 48 h after activation, were evaluated by observing the protruding first polar body and the 4 cell stage cleavage, respectively. When streptomycin was present in the maturation medium, the percentages of matured oocytes 24 h after activation were significantly (p<0.01) lower than those from the other groups (42.5-45.7% vs. 69.1-73.8%). Penicillin and gentamicin treatment did not affect the maturation rates or the percentages reaching the 4 cell stage 48 h after activation. There was no significant difference in cleavage rates among the different antibiotic treatments 48 h after activation. Therefore, streptomycin suppresses the in vitro maturation of immature goat oocytes, but does not influence their subsequent development.

In vitro Activation of Procaspase-8 by Forming the Cytoplasmic Component of the Death-inducing Signaling Complex (cDISC)

  • Roy, Ankoor;Hong, Jong hui;Lee, Jin-Hee;Lee, Young-Tae;Lee, Bong-Jin;Kim, Key-Sun
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.165-170
    • /
    • 2008
  • Procaspase-8 is activated by forming a death-inducing signaling complex (DISC) with the Fas-associated death domain (FADD) and the Fas receptor, but the mechanism of its activation is not well understood. Procaspase-8 devoid of the death effector domain at its N-terminus (${\Delta}nprocaspase-8$) was reported to be activated by kosmotropic salts, but it has not been induced to form a DISC in vitro because it cannot interact with FADD. Here, we report the production of full-length procaspase-8 and show that it is activated by adding the Fas death domain (Fas-DD) and the FADD forming the cytoplasmic part of the DISC (cDISC). Furthermore, mutations known to affect DISC formation in vivo were shown to have the same effect on procaspase-8 activation in vitro. An antibody that induces Fas-DD association enhanced procaspase-8 activation, suggesting that the Fas ligand is not required for low-level activation of procaspase-8, but that Fas receptor clustering is needed for high-level activation of procaspase-8 leading to cell death. In vitro activation of procaspase-8 by forming a cDISC will be invaluable for investigating activation of ligand-mediated apoptosis and the numerous interactions affecting procaspase-8 activation.

Effect of the Timing of Oocyte Activation on Development of Rat Somatic Cell Nuclear Transfer Embryos

  • Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • 제29권4호
    • /
    • pp.229-234
    • /
    • 2005
  • Methods for activation of reconstructed oocytes were examined for the production of nuclear transfer (NT) rat embryos using fetal neural stem cells as donor. Neural stem cells were isolated from Day 14.5 rat fetuses, and the oocytes for recipient cytoplasm were recovered from 4-week old Sprague Dawley rats. After enucleation and nuclear injection, the reconstructed oocytes were immediately exposed to activation medium consisting of 10 mM $SrCl_2$ for 4 h (immediate activation after injection; IAI), or cultured in vitro for $2\~3$ h before activation treatment (injection before activation; IBA). Pre-activated oocytes were also used for NT to test reprogramming potential of artificially activated oocytes. The oocytes were grouped as IIA (immediate injection after activation) and ABI (activation $2\~3$ h before injection). Following NT, the oocytes were cultured in vitro. Development of the NT embryos was monitored at 44 and 119 h after activation. The embryos in groups IAI, mA, and IIA were cleaved to the 2-cell stage at the rates of $36.6\%\;(15/41),\;39.5\%\;(17/43)\;and\;46.3\%$ (25/54), respectively. However, in the ABI group, only one embryo ($1.8\%$, 1/55) was cleaved after activation. After in vitro culture, two NT embryos from IAI group had developed to the morula stage $(4.9\%\cdot2/41)$. However, no morula or blastocyst was obtained in the other groups. These results suggest that immediate activation after injection (IAI) method may be used for the production of rat somatic cell NT embryos.

In Vitro Development of Somatic Cell Nuclear Transferred Bovine Embryos Following Activation Timing in Mil Enucleated Oocytes Cryopreservation

  • Kim Seon-Gyun;Kim Eun-Yeong;Gil Gwang-S;Park Se-Yeong;Yun Ji-Yeon;Park Se-Pil;Jeong Gil-Saeng;Im Jin-Ho
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.9-9
    • /
    • 2002
  • This study was to evaluate the in vitro survival of vitrified-thawed bovine MII enucleated (MIIe) oocytes according to activation timing and minimun volume cooling (MVC) method and their in vitro development after somatic cell nuclear transfer (SONT). Bovine oocytes were recovered from slaughtered bovine ovary and matured in TCM-199 supplemented with 10% FBS. (omitted)

  • PDF

Control of ovarian primordial follicle activation

  • Kim, Jin-Yeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권1호
    • /
    • pp.10-14
    • /
    • 2012
  • The ovarian follicles develop initially from primordial follicles. The majority of ovarian primordial follicles are maintained quiescently as a reserve for the reproductive life span. Only a few of them are activated and develop to an advanced follicular stage. The maintenance of dormancy and activation of primordial follicles are controlled by coordinated actions of a suppressor/activator with close communications with somatic cells and intra-oocyte signaling pathways. Many growth factors and signaling pathways have been identified and the transforming growth factor-beta superfamily plays important roles in early folliculogenesis. However, the mechanism of maintaining the dormancy and survival of primordial follicles has remained unknown for decades. Recently, since the first finding that all primordial follicles are activated prematurely in mice deficient forkhead box O3a, phosphatidylinositol 3 kinase/phosphatase and tensin homolog (PTEN) signaling pathway was reported to be important in the regulation of dormancy and initial follicular activation. With these informations on early folliculogenesis, clinical application can be expected such as in vitro maturation of immature oocytes or in vitro activation of follicles by PTEN inhibitor in cryopreserved ovarian cortical tissues for fertility preservation.

Effect of Antioxidant Treatment during Parthenogenetic Activation Procedure on the Reactive Oxygen Species Levels and Development of the Porcine Parthenogenetic Embryos

  • Bae, Hyo-Kyung;Kim, Soo-Hyun;Lee, Sung-Young;Hwang, In-Sun;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • 제37권1호
    • /
    • pp.51-55
    • /
    • 2013
  • The present study was conducted to examine the effect of antioxidant treatment during parthenogenetic activation procedure on the reactive oxygen species (ROS) levels and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by a combination of electric stimulus and 2 mM 6-dimethylaminopurine (6-DAMP) before in vitro culture. During the activation period, oocytes were treated with $50{\mu}M$ ${\beta}$-mercaptoethanol (${\beta}$-ME), $100{\mu}M$ L-ascorbic acid (Vit. C) or $100{\mu}M$ L-glutathione (GSH). To examine the ROS level, porcine parthenogenetic embryos were stained in $10{\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) dye 20 h after culture, examined under a fluorescence microscope, and the fluorescence intensity (pixels) were analyzed in each embryo. The parthenogenetic embryos were cultured for 6 days to evaluate the in vitro development. The apoptosis was measured by TUNEL assay. The $H_2O_2$ levels of parthenogenetic embryos were significantly lower in antioxidant treatment groups ($26.9{\pm}1.6{\sim}29.1{\pm}1.3$ pixels/embryo, p<0.05) compared to control ($33.2{\pm}1.7$ pixels/embryo). The development rate to the blastocyst stage was increased in antioxidant treatment groups (32.0~32.5%) compared to control (26.9%, p<0.05), although, there was no difference in apoptosis among groups. The result suggests that antioxidant treatment during parthenogenetic activation procedure can inhibit the ROS generation and enhance the in vitro development of porcine parthenogenetic embryos.

Effect of Supplementation of Vitamin E on In Vitro Maturation and Activation of Bovine Oocytes

  • Park, Jong-Im;Jang, Yun-I
    • 한국수정란이식학회지
    • /
    • 제25권3호
    • /
    • pp.165-169
    • /
    • 2010
  • This study was carried out to assess the effect of vitamin E against the reactive oxygen species (ROS) on chemical activation of in vitro matured oocytes. Bovine oocytes were aspirated from slaughtered ovaries and transferred to maturation medium with or without vitamin E ($100\;{\mu}M$). After 22 hours of culture, oocytes with polar bodies were selected and submitted to activation treatments with or without vitamin E. After activation, oocytes were cultured in mSOF medium and rate of development was monitored. For ROS ($H_2O_2$) detection, in vitro matured and activated oocytes were selected and stained with DCFDA and observed under fluorescence microscope. The ROS contents were not significant differences in IVM rate, activation process and embryonic development to blastocysts with or without vitamin E. The cell number of blastocyst showed significant difference (p<0.05) in embryos matured and activated with vitamin E. The results of the present study demonstrated that the exposure of vitamin E in IVM and activation process improved the quality of embryos evaluated by the cell number of blastocysts.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XVI) - in vitro Mouse Lymphoma Assay with 3 chemicals -

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.244-250
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The genotoxicity of 3 synthetic chemicals was evaluated in L5178Y $tk^{+/-}$ mouse lymphoma cells in vitro. 9H-carbazole (CAS No. 86-74-8) did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 1, 3-Dichloro-2-propanol (CAS No. 96-23-1) revealed a significant increase of mutation frequencies in the range of $625-373\;{\mu}g/mL$ in the absence of metabolic activation system and $157-79\;{\mu}g/mL$ in the presence of metabolic activation system. And also, fenpropathrin (CAS No. 64257-84-7) appeared the positive results only in the absence of metabolic activation system. Through the results of MLA tk assay with 3 synthetic chemicals in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these 3 chemicals.

반복핵이식에 의한 복제동물 생산에 관한 연구 I. 토끼 수핵난자의 전기자극에 의한 활성화 (Study on Production of Cloned Animals by Recycling Nuclear Transplantation I. Activation of Nuclear Recipient Oocytes by Electrostimulation in Rabbits)

  • 이효종;최민철;최상용;박충생;윤창현;강대진
    • 한국수정란이식학회지
    • /
    • 제8권2호
    • /
    • pp.151-157
    • /
    • 1993
  • The present study was undertaken to determine the optimal condition for parthenogenetic activation of rabbit oocytes by electric stimulation in vitro in an attempt to develop nuclear transplantation techniques for cloning mammalian embryos and animals. Freshly ovulated oocytes were collected from superovulated rabbits from 13 to 26 hrs. after hCG injection. The cumulus-free oocytes were activated parthenogetically by repeated stimuli of square direct electric pulses in O.3M mannitol solution. After applying electric stimulations of different voltages, pulse durations and pulse times, all of the oocytes were cultured in TCM-199 with 10% FCS for 96 hours in a 5% $CO_2$ incubator, and their developmental potential in vitro was examined. The higher activation rate (68.9%) was achieved at the voltage of 2.0kv/cm, the pulse duration of 60 $\mu$sec and three pulse times and the activation rate of 100% was achieved at the pulse duration of 100 and 200 $\mu$sec, the voltage of 1.5kv/cm and three pulse times. Although the higher rates of activation of oocytes were achieved at 100 and 200 $\mu$sec, none of them developed to blastocyst in vitro. The oocytes collected 18~20 hours post hCG injection showed the highest rate of activation and development to blastocyst in vitro than the oocytes collected 13~15 or 25~26 hours post hCG injection. Therefore, it can be suggested that the application of electric stimulation of 2.0kv/cm, 60 $\mu$sec and three pulse times to the oocytes collected at 18~20 hours post hCG injection would be more beneficial for the parthenogenetic activation of oocytes in rabbits.

  • PDF

Effect of Endoplasmic Reticulum (ER) Stress Inhibitor Treatment during Parthenogenetic Activation on the Apoptosis and In Vitro Development of Parthenogenetic Porcine Embryos

  • Park, Hye-Bin;Kim, Mi-Jeong;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권3호
    • /
    • pp.235-244
    • /
    • 2018
  • We investigate the effect of endoplasmic reticulum (ER) stress inhibitor treatment during parthenogenetic activation of oocytes on the ER stress generation, apoptosis, and in vitro development of parthenogenetic porcine embryos. Porcine in vitro matured oocytes were activated by 1) electric stimulus (E) or 2) $E+10{\mu}M$ Ca-ionophore (A23187) treatment (EC). Oocytes were then treated by ER stress inhibitors such as salubrinal (200 nM) and tauroursodeoxychloic acid (TUDCA, $100{\mu}M$) for 3 h prior to in vitro culture. Parthenogenetic embryos were sampled to analyze ER stress and apoptosis at the 1-cell and blastocyst stages. The x-box binding protein 1 (Xbp1) mRNA and ER stress-associated genes were analyzed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. At the 1-cell stage, although no difference was observed in Xbp1 splicing among treatments, BiP transcription level in the E group was significantly reduced by salubrinal treatment, and GRP94 and ATF4 transcription levels in EC group were significantly reduced by all treatments (p<0.05) compared to control. In the EC group, both apoptotic genes were reduced by ER stress inhibitor treatments compared to control (p<0.05) except Caspase-3 gene by TUDCA treatment. These results suggest that the treatment of ER stress inhibitor during parthenogenetic activation can reduce ER stress, and thereby reduce apoptosis and promote in vitro development of porcine parthenogenetic embryos.