• 제목/요약/키워드: in pipe

검색결과 5,793건 처리시간 0.042초

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 윤한익;진종태;손인수
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • 제22권4호
    • /
    • pp.431-437
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

Seismic response of pipes under the effect of fluid based on exact solution

  • Liu, Yanbing;Khadimallah, Mohamed Amine;Behshad, Amir
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.439-445
    • /
    • 2022
  • One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.

수도관의 부기거동에 관한 연구 (Corrosion Behaviour of Water Pipes)

  • 김원만;박영식
    • 환경위생공학
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 1992
  • Corrosion of pipes Is one of the most serious problems in the maintenance of water worlds. Corrosion is promoted not only by physical factors such as temperature, but also by electrochemical factors including concentration of soluble metal ions, chlorine ion, pH, DO and microorganisms. Corrosion products also affect corrosion rate. In this research, study results are summarized as follows ; 1) Corrosion test was performed for 4 weeks at $70^{\circ}C$, pH 7.0 with specimens of 4 types of metal materials used as service pipes. Corrosion rate and S.E.M were analyzed. The results were showed that corrosion 1.ate of carbon steel pipe was 4.10~5.22 $mg/\textrm{cm}^2$ . week, galvanized steel pipe 0.98~1.34$mg/\textrm{cm}^2$. week, Copper pipe 0.02~0.04$mg/\textrm{cm}^2$. week, stainless steel pipe 0.05~ 0.10$mg/\textrm{cm}^2$ . week. 2) When corrosion rate was tested for tile types of pipes at pH 7 and both $25^{\circ}C$ and $75^{\circ}C$, avaerage corrosion rate for 6 weeks at $25^{\circ}C$ Ivas 2.26$mg/\textrm{cm}^2$ . week in carbon steel pipe, 1.99$mg/\textrm{cm}^2$. week in galvanized steel pipe, 0.26 $mg/\textrm{cm}^2$. week in stainless steel pipe. At $87^{\circ}C$, average corrosion rate for 4 weeks u.3s 4.56 $mg/\textrm{cm}^2$. week in carbon steel pipe,

  • PDF

비용 최소화를 위한 플래어 시스템의 배관 서포트 타입 최적설계 (Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost)

  • 박정민;박창현;김태수;최동훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.325-329
    • /
    • 2011
  • Floating, production, storage and offloading (FPSO) is a production facility that refines and saves the drilled crude oil from a drilling facility in the ocean. The flare system in the FPSO is a major part of the pressure relieving system for hydrocarbon processing plants. The flare system consists of a number of pipes and complicated connection systems. Decision of pipe support types is important since the load on the support and the stress in the pipe are influenced by the pipe support type. In this study, we optimally determined the pipe support types that minimized the support cost while satisfying the design constraints on maximum support load, maximum nozzle load and maximum pipe stress ratio. Performance indices included in the design constraints for a specified design were evaluated by pipe structural analysis using CAESAR II. Since pipe support types were all discrete design variables, an evolutionary algorithm (EA) was used as an optimizer. We successfully obtained the optimal solution that reduced the support cost by 27.2% compared to the initial support cost while all the design requirements were satisfied.

수직형 라이트파이프의 채광성능에 관한 예비평가 (Preliminary Field Test on Daylighting Performance of Perpendicular Light Pipe System)

  • 신혜미;박훈;김정태
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.53-60
    • /
    • 2008
  • The daylighting affects on the human biological cycles and physiological alterations. Daylighting is also an important element in visual comfort and it sometimes influences the quality of vision. Therefore the absence of natural light during the day brings contradictory result. To solve the problems of natural light lack and provide sufficient daylight in interior spaces, it might be necessary to apply some daylighting systems. One of these systems, light pipe system, which is simple, cheep and easily constructed, is very useful to apply for small buildings. The light pipe is simple means of directing daylighting (diffuse and direct lighting)into interior space. In order to application of light pipe system in Korea, it is necessary to optical data of light pipe system. This study aims to evaluate preliminary experiment of the daylighting environment of light pipe system. Light pipe system, that aspect ratio is 1:2(diameter and length), was installed in a windowless mock-up with $27m^2$. The mock-up model was constructed as a prototype of Korean office surface. Illuminance was measured with a Topcon IM-5 Luxmeter to evaluate the distribution of the illuminance on a floor. The indoor and outdoor illuminance and the internal/external illuminance ratio are compared to discuss with in the graphs. Luminance was measured with Radiant imaging Promertric 1400 that is digital photometer to evaluate the distribution of luminance on interior surface. The contrast of luminance is discussed with table and graphs.

오비탈 성형을 이용한 피팅 파이프 플랜지 공정연구 (Fitting Pipe Flange Process Research Using Orbital Forming)

  • 김태걸;박준홍;박영철
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.57-62
    • /
    • 2015
  • A large variety of pipe flanges are required in the marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and has been widely used for a long time; however, it results in high development costs and low productivity, and the products made through this approach usually have safety problems in the welding area. In this research, a new approach for forming pipe flanges based on cold forging and the floating die concept is presented. This innovative approach increases the effectiveness of the material usage and saves time and costs compared with the conventional welding method. To ensure the dimensional accuracy of the final product, finite element analysis (FEA) was carried out to simulate the process of cold forging, and orthogonal experiment methods were used to investigate the influence of four manufacturing factors (stroke of distance, pin die angle, forming of pipe diameter, and speed of the die) and predict the best combination of them. The manufacturing factors were obtained through numerical and experimental studies, which show that the approach is very useful and effective for the forming of pipe flanges and could be widely used in the future.

지역난방용 매설배관의 열응력 흡수에 관한 연구 (A Study on the Absorption of Thermal Stress on the Underground piping for the District heating)

  • 공재향;신병국
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.81-88
    • /
    • 2005
  • There have been many studies on generation equipment and plant piping, but there is no significant study result on the heat transportation pipe. As such, this study established basic theory on the compensated method among buried pipe for regional heating, and further obtained the following results by applying the conditions of AGFW and NCHPP respectively in calculation of friction and maximum installation distance for the buried pipe. Friction coefficient according to the types and physical properties of soil, friction and maximum installation distance were compared to set the application value of friction coefficient according to the location of works. Calculation formula of clay load to be applied for calculation of friction was introduced to the formula of AGFW and the formula of NCHPP that has been used in Nowon district since 1997 to determine the difference and applicability. $120^{\circ}C$ and $95^{\circ}C$ were applied in temperature difference for expansion volume to compare the arm length at the curve pipe so thai it can be reflected in the design in the future. Maximum installation distance according to thickness of pipe was compared to present the necessity of unified specification so that same kinds of pipe materials can be used for same kinds of works.

유전자 알고리듬을 이용한 왕복동식 압축기 루프 파이프 형상의 최적화 (Optimization of the Shape of Loop-pipe in a Reciprocating Compressor Using Genetic Algorithm)

  • 이윤곤;정병규;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.398-405
    • /
    • 2016
  • A shape of loop-pipe in a compressor affects the vibration of compressor. In this paper, optimal design of shape of loop-pipe to decrease the stress was carried out. Body and shell were assumed to be rigid, while loop-pipe is considered to be flexible. The finite element model was derived and programmed. Genetic algorithm was used for optimization. Locations of 18 point in loop-pipe were considered as shape variables, while the shapes of loop-pipe were interpolated as polynomials or ellipses. Maximum stress of loop-pipe was used as a fitness function for optimization. The spatial constraints and acceleration response of shell were also considered in optimization. The maximum stress and acceleration could be reduced by 79 % and 49 % respectively.