Browse > Article
http://dx.doi.org/10.12989/eas.2022.22.4.431

Seismic response of pipes under the effect of fluid based on exact solution  

Liu, Yanbing (Beijing Earthquake Agency)
Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Behshad, Amir (Faculty of Technology and Mining, Yasouj University)
Publication Information
Earthquakes and Structures / v.22, no.4, 2022 , pp. 431-437 More about this Journal
Abstract
One of the best choice for transportation of oil and gas at the end of rivers or seas is concrete pipelines. In this article, a concrete pipe at the end of river is assumed under the earthquake load. The Classic shell theory is applied for the modelling and the corresponding motion equations are derived by energy method. An external force induced by fluid around the pipe is asssumed in the final motion equations. For the solution of motion equations, the differential quadrature method (DQM) and Newmark method are applied for deriving the dynamic deflection of the pipe. The effects of various parameters including boundary conditions, fluid and length to thickness ratio are presented on the seismic response of the concrete pipe. The outcomes show that the clamped pipe has lower dynamic deflection with respect to simply pipe. In addition, with the effect of fluid, the dynamic defelction is increased significantly.
Keywords
concrete pipe; dynamic analysis; earthquake load; fluid force; numerical method;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Al-Furjan, M., Farrokhian, A., Keshtegar, B., Kolahchi, R., Trung, N.-T.J.A.S. and Technology (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp Sci Technol., 107, 106259, https://doi.org/10.1016/j.ast.2020.106259.   DOI
2 Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", ThinWall. Struct., 163, 107706.https://doi.org/10.1016/j.tws.2021.107706.   DOI
3 Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compund., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.   DOI
4 Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022a), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media, In press.
5 Benjamin, T.B. (1961), "Dynamics of a system of articulated pipes conveying fluid", Proc. Royal Soc. A.,261(130), 457-486. https://doi.org/10.1098/rspa.1961.0090.   DOI
6 Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, Mc-Graw Hill.
7 Furjan, M.S.H., Yang, Y., Farrokhian, G.S., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43, 282-298. https://doi.org/10.1002/pc.26373.   DOI
8 Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77, 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3.   DOI
9 Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete", Struct. Concrete, 18(1), 67-74. https://doi.org/10.1002/suco.201500048.   DOI
10 JafarianArani, A and Kolahchi, R. (2016), "Buckling Analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578.   DOI
11 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solids. 82, 104010.   DOI
12 Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656, https://doi.org/10.1016/j.ast.2019.105656.   DOI
13 Liu, W. and Li, J. (2007c), "Seismic response analysis of buried pipelines with stochastic corrosions", Tumu Gongcheng Xuebao/China Civil Eng. J., 40(2), 104-108.
14 Liu, W., Huang, L. and Li, J. (2011), "Experiment on leakage of water pipelines", J. Earthq. Eng. Eng. Vib., 31(4), 167-173
15 Liu, W., Song, Z. and Miao, H. (2018a), "Modified factor for segmented pipes in Chinese pipe seismic design code based on probability density evolution method", KSCE J. Civil Eng., 22(3), 951-961. https://doi.org/10.1007/s12205-018-1370-2.   DOI
16 Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E.,44, 17-24. https://doi.org/10.1016/j.physe.2011.06.024.   DOI
17 Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluids,56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003.   DOI
18 Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete,19(6), 745-753.   DOI
19 RabaniBidgoli, M., Karimi, M.S. and GhorbanpourArani, A. (2016), "Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium", Mech. Adv. Mater. Struct.,23(7), 819-831. https://doi.org/10.1080/15376494.2015.1029170.   DOI
20 Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct.,25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6.   DOI
21 Fakhar, A. and Kolahchi, R.J.I.J.O.M.S. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.   DOI
22 Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.   DOI
23 Liu, W. and Li, J. (2007b), "Simulation analysis for probability density of buried pipeline area corrosion rate", Tongji Daxue Xuebao/Journal of Tongji University, 35(10), 1295-1298.
24 Khalili, A., Alavinasab, A. and Kennedy, M. (2019), "Localizing pipe wall features using acoustic wave propagation in water bar inside of pipe", J. Pipeline Syst. Eng. Pract., 3, 1-7. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000406.   DOI
25 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.J.I.J.O.M.S. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
26 Kolahchi, R., Keshtegar, B. And Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662. https://doi.org/10.1177%2F10996362211020388.   DOI
27 Liu, W. and Li, J. (2007a), "Application of perturbation method to stochastic seismic response analysis of buried pipeline with corrosion", J. Earthq. Eng. Eng. Vib., 27(2), 32-38.   DOI
28 Liu, W. and Li, J. (2008a), "Seismic response evaluation of the impact of corrosion on buried pipelines based on the Markov process", Earthq. Eng. Eng. Vib., 7(3), 295-303. https://doi.org/10.1007/s11803-008-0896-6.   DOI
29 Liu, W. and Li, J. (2008b), "Stochastic seismic response of pipelines with corrosion", J. Earthq. Eng., 12(6), 914-931. https://doi.org/10.1080/13632460801890190.   DOI
30 Liu, W., Miao, H., Wang, C. and Li, J. (2017), "Experimental validation of a model for seismic simulation and interaction analysis of buried pipe networks", Soil Dyn. Earthq. Eng., 100, 113-130. https://doi.org/10.1016/j.soildyn.2017.05.024.   DOI
31 Liu, W., Sun, Q., Miao, H. and Li, J. (2015), "Nonlinear stochastic seismic analysis of buried pipeline systems", Soil Dyn. Earth. Eng., 74, 69-78. https://doi.org/10.1016/j.soildyn.2015.03.017.   DOI
32 Liu, X., Zhang, H., Gu X., Chen, Y., Xia, M. and Wu, K. (2017), "Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults", Eartquak. Struct., 12, 321-332. https://doi.org/10.12989/eas.2017.12.3.321.   DOI
33 Kolahchi, R., RabaniBidgoli, M., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech.,29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9.   DOI
34 Mohammadian, H., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load", Eartq. Struct., 13, 589-598. https://doi.org/10.12989/eas.2017.13.6.589.   DOI
35 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater.,21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.   DOI
36 Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos. https://doi.org/10.1002/pc.26118. https://doi.org/10.1002/pc.26118.   DOI
37 RabaniBidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire", Comput. Concrete, 20(2), 119-127.   DOI
38 Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete,18(5), 1053-1063.   DOI
39 Sharifi, M., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Dynamic analysis of concrete beams reinforced with Tio2 nano particles under earthquake load", Wind Struct., 26(1), 1-9.   DOI
40 Shokravi, M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333.   DOI
41 Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct.,92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.   DOI
42 Su, Y., Li, J., Wu, C. and Li, Z.X. (2016), "Influences of nanoparticles on dynamic strength of ultra-high performance concrete", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.   DOI
43 Wang, C., Liu, W. and Li, J. (2015), "Full-scale test of buried water supply pipeline network with explosion simulation earthquake", Tongji Daxue Xuebao/Journal of Tongji University, 43(10), 1487-1496.
44 Wong, L.S. and Nehdi, M.L. (2020), "Quantifying Resistance of Reinforced Concrete Pipe Joints to Water Infiltration", J. Pipeline Syst. Eng. Pract., 11, https://doi.org/10.1061/PS.1949-1204.0000462.   DOI
45 Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci.,49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006.   DOI
46 Zamani Nouri, A. (2017), "Mathematical Modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331.   DOI
47 Liu, W., Miao, H., Wang, C. and Li, J. (2018), "The stiffness of axial pipe-soil springs and axial joint springs tested by artificial earthquakes", Soil Dyn. Earthq. Eng., 106, 41-52. https://doi.org/10.1016/j.soildyn.2017.12.014.   DOI