• 제목/요약/키워드: improvement of durability

검색결과 592건 처리시간 0.024초

알칼리 프리계 급결제를 사용한 강섬유 보강 숏크리트의 성능 평가 (Performance of Steel Fiber Reinforced Shotcrete using Alkali Free Based Accelerator)

  • 백철우;박찬기;전언중;원종필
    • 한국농공학회논문집
    • /
    • 제46권3호
    • /
    • pp.65-72
    • /
    • 2004
  • Modern underground and tunnel works that the wet type shotcrete is getting widely designed and applied in a large scale project. Further to its applications, the needs of improving the performance of the shotcrete, such as new and developed additives and accelerators fur increasing the performance of shotcrete, become the most important issue in the field. The main objective of this study evaluated to performance of steel fiber reinforced shotcrete using alkali free based accelerator for the durability and high quality of shotcrete. The major test variables are accelerator type and its dosage. One type silicate based accelerator and one type aluminate based accelerator and one type alkali free based accelerator were used. The dosage of accelerators is determined by the manufactures and laboratory test condition. Compressive strength test results showed that the dosage of silicate and aluminate based accelerators caused reduction of mechanical properties of shotcrete. Compressive strength of alkali free based accelerator is more stable than of silicate and aluminate based accelerators. Also, according to the compressive strength and flexural test results, it was found that steel fiber reinforced shotcrete used alkali free based accelerator could attain significant improvement in the mechanical and flexural performance.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli

  • Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.434-442
    • /
    • 2008
  • We observed that an inclusion body (IB) of recombinant ${\beta}$-galactosidase that was produced by the araBAD promoter system in Escherichia coli (E. coil) showed enzyme activity. In order to improve its activity, the lowering of the transcription rate of the ${\beta}$-galactosidase structural gene was attempted through competition between an inducer (L-arabinose) and an inducer analog (D-fucose). In the deep-well microtiter plate culture and lab-scale fermentor culture, it was demonstrated that the addition of D-fucose caused an improvement in specific ${\beta}$-galactosidase production, although ${\beta}$-galactosidase was produced as an IB. In particular, the addition of D-fucose after induction led to an increase in the specific activity of ${\beta}$-galactosidase IB. Finally, we confirmed that the addition of D-fucose after induction caused changes in the structure of ${\beta}$-galactosidase IB, with higher enzyme activity. Based on these results, we expect that an improved enzyme IB will be used as a biocatalyst of the enzyme bioprocess, because an enzyme IB can be purified easily and has physical durability.

스프링강 표면 내구수명 향상을 위한 온간 피닝 공정의 유한요소 해석 (Finite Element Analysis of Warm Peening Process on Spring Steel for Surface Durability Improvement)

  • 이상욱;김재연;박재원;변재원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권1호
    • /
    • pp.72-79
    • /
    • 2018
  • Purpose: Numerical and experimental study was performed to evaluate the effect of peening temperature on the residual compressive stress distribution and magnitude of residual compressive stress at the material surface. Methods: A compressive air-propelled warm peening equipment was designed and manufactured for warm peening test. Results: 3D dynamic finite element (FE) model of the warm peening test was proposed and validity of the proposed FE model was verified by comparing the predicted residual stresses with the measured residual stresses in the open literature. Maximum warm peening temperature and a proper peening time were investigated with the proposed FE model. Conclusion: Compressive residual stress increased remarkably with peening temperature increased. But, peening temperature is greater than $350^{\circ}C$, the effect of peening temperature disappeared. Therefore, maximum peening temperature possibly applicable for warm peening industry might be $350^{\circ}C$ and peening time is 45s.

세라마이드 함유 섬유의 복합갈로탄닌 처리에 의한 아토피성 피부질환 완화작용에 대한 연구 (A Study on the Effect of Gallotannin Treatment of Ceramide-containing Fibers on Atopic Skin Diseases)

  • 김태경;조나영;마희정;양광웅;노용환
    • 한국염색가공학회지
    • /
    • 제25권4호
    • /
    • pp.271-278
    • /
    • 2013
  • In order to investigate the effect of gallotannin treatment to ceramide-containing fabrics on atopic skin diseases, the agglomeration of standard protein BSA and the deactivation of model enzyme were examined. The gallotannin treated on ceramide-containing fabrics precipitated the standard protein, BSA, and therefore deactivated the model enzyme by 70% at 6% treatment concentration. Wash durability should be improved after around 5 cycles of washing. Clinical test of the gallotannin-treated fabrics was carried out on mice for two test items, transepidermal water loss assay and severity score of diseased skin of mice. The results showed significant level of improvement of atopic skin diseases compared with the negative controled.

웜기어 감속기 제작 및 성능평가에 관한 연구 (A Study on the Fabrication and Performance Evaluation of Worm Gear Reducer)

  • 이동규;진진;전민형;김래성;류성기
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2018
  • We aimed to develop a high quality 3.5 ton class swing reducer by studying the efficiency improvement of the reducer through the optimum design and performance evaluation of the assembled, high efficiency, lightweight 3.5 ton swing reducer. Based on the optimal design of the worm and worm wheel, the optimal manufacturing method of the worm wheel, the optimized casing design, and the optimum design of the output pinion, Respectively. Therefore, in this paper, to improve the efficiency of the worm gear reducer system, we will develop the manufacturing technology and verify the mass production by combining the manufacturing process design, processing and assembling technology according to the optimization design. We have conducted research to realize mass production by product verification such as product efficiency, reliability and durability according to optimal design of worm gear reducer.

스틸 스터드 모듈러 건축물 접합부위의 결로방지성능 개선방안 평가 (Evaluation of Condensation Resistance of Steel Stud Wall Corner Details in Modular Buildings)

  • 오지현;양시원;조봉호;김선숙
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.107-114
    • /
    • 2014
  • Modular systems are widely used in various building types including housing, dormitory, and barracks. Steel studs have many advantages over other materials as construction components of modular buildings in terms of seismic performance, durability and maintenance. However, steel stud modular systems also have weakness in condensation resistance due to high thermal conductivity of steel. The purpose of this study is to investigate the condensation resistance of steel stud wall corner details in modular buildings by thermal simulation. The condensation resistance was evaluated by temperature difference ratio according to ISO 13788. The result showed that there was little difference between the alternatives of adding cavity and insulation. Separation of interstitial steel studs showed outstanding effect on the improvement of temperature difference ratio.

마이크로 아크 산화 표면처리 기술을 활용한 치과도재 소부용 티타늄 인공치아 결합강도 연구 (A Study on the Bonding Strength of Titanium Artificial Teeth for Baking Dental Ceramics using Micro-arc Oxidation Surface Treatment Technology)

  • 송종법;박종민;김종순;정효경;최원식
    • 한국산업융합학회 논문집
    • /
    • 제25권2_2호
    • /
    • pp.309-314
    • /
    • 2022
  • The bonding strength [ISO22674] test was conducted by firing a dedicated ceramic powder on the surface of the dental titanium material treated with micro-arc oxidation. In the test group, an average result value of 34.34 MPa was obtained, and in the control group, a result value of 21.53 MPa was obtained. The bonding strength of the test group was higher than that of the control group by 12.81 MPa, resulting in a 37% improvement in durability of the dental artificial tooth ceramic restoration.

순환 패션 시스템을 위한 테크놀로지제이션의 전략적 특성 (Strategic Characteristics of Technologization for Circular Fashion System)

  • 김미경;임은혁
    • 한국의류학회지
    • /
    • 제46권6호
    • /
    • pp.1039-1057
    • /
    • 2022
  • The fashion system has been criticized for relying on a linear economy to reduce short-term costs and increase profits. Meanwhile, the circular economy strives to expand the value chain through a closed loop for companies, society, and the environment by separating consumption from resources. This study aims to elucidate the strategic characteristics of the technological measures that fashion companies and brands are trying to innovate into a sustainable fashion system on the basis of the circular economy concept. Thus, we conducted case studies by dividing the value chain of the fashion system into design, production, and consumption to identify the technological development of the circular fashion system from a technologization perspective that incorporates technological values. First, design appeared to strengthen emotional durability, design and process with circulation in mind, and fashion product digitalization. Second, production manifested itself as material development for the new fiber economy, improvement of non-environmental processes, and customization of demand-driven, responsive production. Third, consumption was the spread of the environmental consumption culture through the sharing economy platform, the realization of a virtual wearing experience to prevent rapid disposal, and the provision of information on sustainable consumption.