• Title/Summary/Keyword: improved fuzzy clustering algorithm

Search Result 52, Processing Time 0.025 seconds

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index (최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chan;Oh, Sung-Kwun;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

A Massively Parallel Algorithm for Fuzzy Vector Quantization (퍼지 벡터 양자화를 위한 대규모 병렬 알고리즘)

  • Huynh, Luong Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.411-418
    • /
    • 2009
  • Vector quantization algorithm based on fuzzy clustering has been widely used in the field of data compression since the use of fuzzy clustering analysis in the early stages of a vector quantization process can make this process less sensitive to its initialization. However, the process of fuzzy clustering is computationally very intensive because of its complex framework for the quantitative formulation of the uncertainty involved in the training vector space. To overcome the computational burden of the process, this paper introduces an array architecture for the implementation of fuzzy vector quantization (FVQ). The arrayarchitecture, which consists of 4,096 processing elements (PEs), provides a computationally efficient solution by employing an effective vector assignment strategy during the clustering process. Experimental results indicatethat the proposed parallel implementation providessignificantly greater performance and efficiency than appropriately scaled alternative array systems. In addition, the proposed parallel implementation provides 1000x greater performance and 100x higher energy efficiency than other implementations using today's ARMand TI DSP processors in the same 130nm technology. These results demonstrate that the proposed parallel implementation shows the potential for improved performance and energy efficiency.

A Study on the Recognition of Car Plate using an Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 차량 번호판 인식에 관한 연구)

  • 임은경;김광백
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.433-444
    • /
    • 2000
  • The recognition of car plate was investigated by means of the enhanced fuzzy ART algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the contour tracking algorithm by utilizing the SOFM was applied to extract the specific area which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the enhanced fuzzy ART algorithm. In this study we propose the novel fuzzy ART algorithm different from the conventional fuzzy ART algorithm by the dynamical establishment of the vigilance threshold which shows a tolerance limit of unbalance between voluntary and saved patterns for clustering. The extraction rate obtained by using the morphological information of horizontal and vertical edges showed better results than that from the color information of RGB and HSI. Furthermore, the recognition rate of the enhanced fuzzy ART algorithm was improved much more than that of the conventional fuzzy ART and SOFM algorithms.

  • PDF

Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method (PFCM 클러스터링 기법의 개선)

  • Heo, Gyeong-Yong;Choe, Se-Woon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.177-185
    • /
    • 2009
  • Cluster analysis or clustering is a kind of unsupervised learning method in which a set of data points is divided into a given number of homogeneous groups. Fuzzy clustering method, one of the most popular clustering method, allows a point to belong to all the clusters with different degrees, so produces more intuitive and natural clusters than hard clustering method does. Even more some of fuzzy clustering variants have noise-immunity. In this paper, we improved the Possibilistic Fuzzy C-Means (PFCM), which generates a membership matrix as well as a typicality matrix, using Gath-Geva (GG) method. The proposed method has a focus on the boundaries of clusters, which is different from most of the other methods having a focus on the centers of clusters. The generated membership values are suitable for the classification-type applications. As the typicality values generated from the algorithm have a similar distribution with the values of density function of Gaussian distribution, it is useful for Gaussian-type density estimation. Even more GG method can handle the clusters having different numbers of data points, which the other well-known method by Gustafson and Kessel can not. All of these points are obvious in the experimental results.

A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network (퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.374-379
    • /
    • 2007
  • This paper focuses on the improvement of fault detection algorithm in FRTU(feeder remote terminal unit) on the feeder of distribution power system. FRTU is applied to fault detection schemes for phase fault and ground fault. Especially, cold load pickup and inrush restraint functions distinguish the fault current from the normal load current. FRTU shows FI(Fault Indicator) when the fault current is over pickup value or inrush current. STFT(Short Time Fourier Transform) analysis provides the frequency and time Information. FCM(Fuzzy C-Mean clustering) algorithm extracts characteristics of harmonics. The neural network system as a fault detector was trained to distinguish the inruih current from the fault status by a gradient descent method. In this paper, fault detection is improved by using FCM and neural network. The result data were measured in actual 22.9kV distribution power system.

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF

A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control (모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF