• Title/Summary/Keyword: improved EKF

Search Result 30, Processing Time 0.031 seconds

States Estimation of Nonlinear Stochastic System Using Single Term Walsh Series (월쉬 단일항 전개를 이용한 비선형 확률 시스템의 상태추정)

  • Lim, Yun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • The EKF(Extended Kalman filter) method which is the state estimation algorithm of nonlinear stochastic system depends on the initial error and the estimated states. Therefore, the divergence of the estimated state can be caused if the initial values of the estimated states are not chosen as approximate real state values. In this paper, the demerit of the existing EKF method is improved using the EKF algorithm transformated by STWS(Single Term Walsh Series). This method linearizes each sampling interval of continous-time system through the derivation of an algebraic iterative equation without discretizing continuous system by the characteristic of STWS, the convergence of the estimated states can be improved. The validity of the proposed method is checked through comparison with the existing EKF method in simulation.

LiPB Battery SOC Estimation Using Extended Kalman Filter Improved with Variation of Single Dominant Parameter

  • Windarko, Novie Ayub;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • This paper proposes the State-of-charge (SOC) estimator of a LiPB Battery using the Extended Kalman Filter (EKF). EKF can work properly only with an accurate model. Therefore, the high accuracy electrical battery model for EKF state is discussed in this paper, which is focused on high-capacity LiPB batteries. The battery model is extracted from a single cell of LiPB 40Ah, 3.7V. The dynamic behavior of single cell battery is modeled using a bulk capacitance, two series RC networks, and a series resistance. The bulk capacitance voltage represents the Open Circuit Voltage (OCV) of battery and other components represent the transient response of battery voltage. The experimental results show the strong relationship between OCV and SOC without any dependency on the current rates. Therefore, EKF is proposed to work by estimating OCV, and then is converted it to SOC. EKF is tested with the experimental data. To increase the estimation accuracy, EKF is improved with a single dominant varying parameter of bulk capacitance which follows the SOC value. Full region of SOC test is done to verify the effectiveness of EKF algorithm. The test results show the error of estimation can be reduced up to max 5%SOC.

An improved extended Kalman filter for parameters and loads identification without collocated measurements

  • Jia He;Mengchen Qi;Zhuohui Tong;Xugang Hua;Zhengqing Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.131-140
    • /
    • 2023
  • As well-known, the extended Kalman filter (EKF) is a powerful tool for parameter identification with limited measurements. However, traditional EKF is not applicable when the external excitation is unknown. By using least-squares estimation (LSE) for force identification, an EKF with unknown input (EKF-UI) approach was recently proposed by the authors. In this approach, to ensure the influence matrix be of full column rank, the sensors have to be deployed at all the degrees-of-freedom (DOFs) corresponding to the unknown excitation, saying collocated measurements are required. However, it is not easy to guarantee that the sensors can be installed at all these locations. To circumvent this limitation, based on the idea of first-order-holder discretization (FOHD), an improved EKF with unknown input (IEKF-UI) approach is proposed in this study for the simultaneous identification of structural parameters and unknown excitation. By using projection matrix, an improved observation equation is obtained. Few displacement measurements are fused into the observation equation to avoid the so-called low-frequency drift. To avoid the ill-conditioning problem for force identification without collocated measurements, the idea of FOHD is employed. The recursive solution of the structural states and unknown loads is then analytically derived. The effectiveness of the proposed approach is validated via several numerical examples. Results show that the proposed approach is capable of satisfactorily identifying the parameters of linear and nonlinear structures and the unknown excitation applied to them.

Performance of PN Code Synchronization with Extended Kalman Filter for a Direct-Sequence Spread-Spectrum System (직접시퀀스 확산대역 시스템을 위한 Extended Kalman Filter 기반의 PN 부호 동기화 성능)

  • Kim, Jin-Young;Yang, Jae-Soo
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.107-110
    • /
    • 2009
  • In this paper, a PN code tracking loop with extended Kalman filter (EKF) is proposed for a direct-sequence spread-spectrum. EKF is used to estimate amplitude and delay in a multipath. fading channel. It is shown that tracking error performance is significantly improved by EKF compared with a conventional tracking loop.

  • PDF

Performance of PN Tracking with Extended Kalman Filter (Extended Kalman Filter기반의 PN부호 추적성능)

  • Bae, Jung-Nam;Koo, Sung-Wan;Kim, Sung-Ill;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.112-114
    • /
    • 2009
  • In this paper, a PN code tracking loop with extended Kalman filter (EKF) is proposed for a direct-sequence spread-spectrum. EKF is used to estimate amplitude and delay in a multipath fading channel. It is shown that tracking error performance is significantly improved by EKF compared with a conventional tracking loop.

  • PDF

Analysis of Database Referenced Navigation by the Combination of Heterogeneous Geophysical Data and Algorithms

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.373-382
    • /
    • 2016
  • In this study, an EKF (Extended Kalman Filter) based database reference navigation using both gravity gradient and terrain data was performed to complement the weakness of using only one type of geophysical DB (Database). Furthermore, a new algorithm which combines the EKF and profile matching was developed to improve the stability and accuracy of the positioning. On the basis of simulations, it was found that the overall navigation performance was improved by the combination of geophysical DBs except the two trajectories in which the divergence of TRN (Terrain Referenced Navigation) occurred. To solve the divergence problem, the profile matching algorithm using the terrain data is combined with the EKF. The results show that all trajectories generate the stable performance with positioning error ranges between 14m to 23m although not all trajectories positioning accuracy is improved. The average positioning error from the combined algorithm for all nine trajectories is about 18 m. For further study, a development of a switching geophysical DB or algorithm between the EKF and the profile matching to improve the navigation performance is suggested.

CenterTrack-EKF: Improved Multi Object Tracking with Extended Kalman Filter (CenterTrack-EKF: 확장된 칼만 필터를 이용한 개선된 다중 객체 추적)

  • Hyun-Sung Yang;Chun-Bo Sim;Se-Hoon Jung
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.9-18
    • /
    • 2024
  • Multi-Object trajectory modeling is a major challenge in MOT. CenterTrack tried to solve this problem with a Heatmap-based method that tracks the object center position. However, it showed limited performance when tracking objects with complex movements and nonlinearities. Considering the degradation factor of CenterTrack as the dynamic movement of pedestrians, we integrated the EKF into CenterTrack. To demonstrate the superiority of our proposed method, we applied the existing KF and UKF to CenterTrack and compared and evaluated it on various datasets. The experimental results confirmed that when EKF was integrated into CenterTrack, it achieved 73.7% MOTA, making it the most suitable filter for CenterTrack.

Position Estimation of MBK system for non-Gaussian Underwater Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 MBK 시스템의 위치 추정)

  • Lee, Dae-Hee;Yang, Yeon-Mo;Huh, Kyung Moo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.232-238
    • /
    • 2013
  • This paper study the position estimation of MBK system according to the non-linear filter for non-Gaussian noise in underwater sensor networks. In the filter to estimate location, recently, the extended Kalman filter (EKF) and particle filter are getting attention. EKF is widely used due to the best algorithm in the Gaussian noise environment, but has many restrictions on the usage in non-Gaussian noise environment such as in underwater. In this paper, we propose the improved One-Dimension Particle Filter (ODPF) using the distribution re-interpretation techniques based on the maximum likelihood. Through the simulation, we compared and analyzed the proposed particle filter with the EKF in non-Gaussian underwater sensor networks. In the case of both the sufficient statistical sample and the sufficient calculation capacity, we confirm that the ODPF's result shows more accurate localization than EKF's result.

Two-Dimensional Localization Problem under non-Gaussian Noise in Underwater Acoustic Sensor Networks (비가우시안 노이즈가 존재하는 수중 환경에서 2차원 위치추정)

  • Lee, DaeHee;Yang, Yeon-Mo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.418-422
    • /
    • 2013
  • This paper has considered the location estimation problem in two dimension space by using a non-linear filter under non-Gaussian noise in underwater acoustic sensor networks(UASNs). Recently, the extended Kalman filter (EKF) is widely used in location estimation. However, the EKF has a lot of problems in the non-linear system under the non-gaussian noise environment like underwater environment. In this paper, we propose the improved Two-Dimension Particle Filter (TDPF) using the re-interpretation distribution techniques based on the maximum likelihood (ML). Through the simulation, we compared and analyzed the proposed TDPF with the EKF under the non-Gaussian underwater sensor networks. Finally, we determined that the TDPF's result shows more accurate localization than EKF's result.

Dynamic Data Path Prediction use Extend EKF Movement Tracing in Net-VE (Net-VE에서 이동궤적을 이용한 동적데이터 경로예측)

  • Song, Sun-Hee;Oh, Haeng-Soo;Park, Kwang-Chae;Kim, Gwang-Jun;Ra, Sang-Dong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Improved EKF suggests variable path prediction to reduce the event traffic caused by the information sharing among multi-users in networked virtual environment. The three dimensional virtual space is maintained consistently by endless status information exchange among dispersed users, and periodic status transmission brings traffic overhead in network. By using the error between the measured movement trace of dynamic information and the EKF predicted, we propose the method applied to predict the mobile packet of dynamic data which is simultaneously changing. And, the simulation results of DIS dead reckoning algorithms and EKF path prediction is compared here. It followed the specific path and while moving, the proposed method which it proposes predicting with DIS dead reckoning algorithm and to compare to the mobile path of the actual object and it got near it predicts the possibility of knowing it was.

  • PDF