Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography

Vol. 34, No. 4, 373-382, 2016
http:/dx.doi.org/10.7848/ksgpc.2016.34.4.373

ISSN 1598-4850(Print)
ISSN 2288-260X(Online)

Original article

Analysis of Database Referenced Navigation by the Combination of
Heterogeneous Geophysical Data and Algorithms

Lee, Jisun” - Kwon, Jay Hyoun?

Abstract

In this study, an EKF (Extended Kalman Filter) based database reference navigation using both gravity
gradient and terrain data was performed to complement the weakness of using only one type of geophysical
DB (Database). Furthermore, a new algorithm which combines the EKF and profile matching was developed to
improve the stability and accuracy of the positioning. On the basis of simulations, it was found that the overall
navigation performance was improved by the combination of geophysical DBs except the two trajectories in
which the divergence of TRN (Terrain Referenced Navigation) occurred. To solve the divergence problem, the
profile matching algorithm using the terrain data is combined with the EKF. The results show that all trajectories
generate the stable performance with positioning error ranges between 14m to 23m although not all trajectories
positioning accuracy is improved. The average positioning error from the combined algorithm for all nine
trajectories is about 18 m. For further study, a development of a switching geophysical DB or algorithm between
the EKF and the profile matching to improve the navigation performance is suggested.

Keywords : GGTRN, Profile Matching, Heterogeneous DB and Algorithm, Combination of DB and Algorithm

1. Introduction

An alternative navigation system which compensates INS
(Inertial Navigation System) error based on the geophysical
DB (Database) has been studied to determine the position of a
moving vehicle under non-GNSS (Global Navigation Satellite
System) environments such as GNSS signal jamming or
solar storms. Among various geophysical DBRN (Database
Referenced Navigation) systems, TRN (Terrain Referenced
Navigation) is the most popular, and it already has been
adopted for the airplane or missile navigation (Hollowell,
1990; Laur and Llanso, 1995; Cowie et al., 2008; Wang and
Bian, 2008). Recently, some studies show interests in the
GGRN (Gravity Gradient Referenced Navigation) as a rising
technique for the submarine navigation on the strength of

development of precise sensor (Zhang et al., 2004; Richeson,

2008; Rogers, 2009; Liu et al., 2010; DeGregoria, 2010). In
DBRN, various navigation algorithms (e.g. profile matching,
area matching, filter based) are being applied to compensate
the INS error (Titterton and Weston, 2004; Groves, 2013).
However, the divergence of position sometimes occurs
in the filter based algorithm when the linearity between
measurements and states is not preserved (Perea et al., 2007).
Also, most navigation algorithms generate less precise
navigation results if the local signatures of geophysical
data are not significantly dominant (Groves, 2013; Lee et
al., 2013). Since not only characteristics of the geophysical
data but the strengths and weaknesses of each navigation
algorithm are different, a new type of study which combines
various geophysical data or algorithm is getting started to
conserve stability of the navigation performance (Robins,
1998; Liu et al., 2009; Xiong et al., 2013; Lee et al., 2014).
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From the same point of view, the performance of GGRN
constructed based on an EKF (Extended Kalman Filter) was
analyzed and the necessity of the combination of gravity
gradient with terrain or filter based algorithm with the profile
matching algorithm was suggested as a way to support more
stable and precise navigation (Lee et al., 2014; Lee and Kwon,
2014). In this study, therefore, a new type of combination
navigation algorithm which uses both gravity gradient and
terrain DB, as well as EKF and profile matching algorithm,
was developed. The performance and its effectiveness were
evaluated by comparing with each GGRN, TRN, and profile

matching results.
2. Methodologies

In general, each geophysical data show different
characteristics despite the same region. Also, the resolution
and precision of the constructed geophysical DB are not
identical. Therefore, GGRN sometimes generates better
navigation results than TRN, but sometimes does not.
Also, the profile matching algorithm which stacks obtained
information and compares it with DB would be more stable
than a filter based algorithm when geophysical data varies
significantly. It is because a filter based algorithm sometimes
causes wrong or over-correction when linearity between
measurements and states is not guaranteed. In this kind
of situation, a combination of various geophysical DBs or
algorithms would be implemented to complement pros and
cons of each geophysical DB and navigation algorithm.
In this study, the EKF based algorithm developed in the
previous study was modified to apply both gravity gradient
and terrain data as measurements, and the profile matching
algorithm which uses terrain data was constructed. Then,
the final navigation position of the vehicle was determined
by combining the result from EKF with one from the profile
matching algorithm.

Fig. 1 illustrates the principle of the combined navigation
algorithm which uses heterogeneous geophysical DBs
and algorithms. The position and attitude error of the INS
are compensated based on gravity gradient and terrain DB
using EKF algorithm every epoch. Also, a measured terrain

information is stored as a form of a profile. If vehicle obtains
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enough terrain information or a specific condition is met,
candidate profiles are extracted from the DB and compared to
the obtained profile. When a profile is selected, there are two
candidate positions (one from the EKF and the other from the
profile matching algorithm) at the same epoch. Therefore, it
is possible to check the reliability of the filter based position
and re-determine the final position of the current epoch by

combining them.

> measured profile

++» candidate profile
- selected profile

® Re-determine Position

by combining filter and profile position

+ INS error compensation based on EKF + Perform profile matching - Combine fiter and profile based position

every second - Determine position and flag considering position difference and

+ Store terrain measurement profile flag

Fig. 1. Principles for combining heterogeneous geophysical
DBs and algorithms

2.1 Combination of geophysical DBs using EKF

The geophysical DB referenced navigation algorithm
is categorized according to the way to apply obtained
geophysical information. The batch process stacks obtained
geophysical information for a certain period of time and
compares it with DB. On the other hand, the sequential
process which uses a various filter (e.g. EKF, UKF (Unscented
Kalman Filter), BKF (Bank of Kalman Filter), etc.) estimates
the unknowns or their errors based on the relation between
measurements and unknown parameters. Among various
filters, EKF is broadly applied due to effectiveness regarding
the calculation time (Haykin, 2001). Therefore, Lee et al.
(2014) realized GGRN and TRN based on the EKF and
analyzed their performance considering various factors
such as DB-sensor error, DB resolution, update rates. In the
simulation, it was found that TRN is relatively more stable
than GGRN if the currently available geophysical sensor and
DB are applied. However, TRN sometimes diverged due to
non-linearity between measurements and states. Therefore,
it was pointed out that the GGRN is still beneficial, and six
gravity gradient components which show different local
variation could be a way to complement the weakness of TRN.

In this study, the previously constructed GGRN has been
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modified to include terrain data. In other words, a centralized
type of EKF is developed to use both gravity gradient and
terrain for the navigation error compensation. In general, the
centralized filter is known that it has the benefit of minimal
information loss (Skog, 2009). Eq. (1) shows the measurement
equation of GGTRN (Gravity Gradient and Terrain
Referenced Navigation). Simply, it could be understood as a
modified version of GGRN by adding one terrain difference
as a measurement. The measurement vectorz, is a form of
difference between information obtained from sensors and
that from DB or INS and a total of nine measurements are
included every epoch : six for gravity gradient, one for
terrain, height and yaw, respectively. The design matrix
Hy, for the gravity gradient and terrain is determined as the
slope of geophysical data in the latitudinal and longitudinal
directions. x, is the 15-state vector and v, is the measurement
noise vector . For a more detalied explanation on the system
model and the measurement equation, please refer Lee et al.
(2015).

2z, = Hyxy + vy, v~N(0,R) (1)
ALY [0¥
|W‘ - [Sor] ] copu_
where z =| Hpp — (Hparo — Hradar)

thS - hbaro
ycnmpass —Yins

[0me 0l nap

00 oLy | [ows,
l d¢ 6x1 04 6xa e |[ q;l Zl 06><12]|
| oyn|| ar
OHpp OHpp | 6x3 |
Hy =| 5 0 Ogxiz | T 0115
% oa 0 oa 01515 ’
0 0 1 04412 Oise
0156 0 0 1 046

2.2 Profile matching algorithm

Because geophysical data does not vary linearly in
the latitude or longitude direction and sometimes shows
a relatively small variation, the filter based algorithm
occasionally diverges. In this study, the profile matching
algorithm was constructed to complement the weakness of
the filter based algorithm and to check the reliability of the
position from filter based algorithm. It is known that the
profile matching algorithm generates better performance
when geophysical data shows larger variation and local

characteristics so that terrain DB indicating a higher

precision and resolution is applied for the profile matching.
Fig. 2 shows the flow chart of the profile matching
algorithm. The vehicle obtains the height of the terrain
every epoch and stacks it for 10 seconds; then stored terrain
information is compared to candidate profiles extracted from
DB. Under the assumption that the vehicle flies straightly
from south to north direction with constant speed, candidates
profiles were generated as a form of the grid by moving initial
point to the latitude and longitude direction five times. The
interval to the latitude direction is determined by dividing
total moving distance which is calculated based on the INS-
indicated position into 10, and the interval to the longitude is
assumed as a half of the DB resolution (1.5arcsec = 45m) to
improve the reliability of profile position. The final position
of the vehicle from the profile matching is selected when
the MAD (Mean Absolute Difference) of height between
vehicle profile and candidate profile is the minimum. Eq.
(2) represents the MAD; Huenicle and Hcanaidate are the
height of vehicle profile and candidate profile, respectively.

— Zilglleehicle - Hcandidatel (2)

MAD 10

Also, Some previous studies suggested indexes (e.g. 0T,
0z) which show roughness of the profile for the purpose of
checking the feature of the terrain and concluded that the
performance of the profile matching algorithm would be
better when those indexes are large (Siouris, 2004). In this
study, both indexes are adopted; Or which represents the
overall variation of heights and 0z which means the variation

of the height difference are calculated using Eq. (3).

_ Zilglleehicle - Hvehiclel
T — 9 4
9 U r (3)
_ Zi:llH vehicle — H vehiclel o
0; = 38 ’ H' = Hi+1 - Hi

where H is the height of a vehicle profile, A’ is the height
difference of a vehicle profile, H and H’ are the average of
height and height difference over a vehicle profile.

Because the characteristics of each profile are different, it
is difficult to set certain criteria to judge whether the terrain
roughness is large enough. Therefore, it was determined

empirically through trial and error; 0T and 9z should be
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larger than 40% of the standard deviation of heights of whole
candidate profiles and 10m, respectively. Then, the position
update is conducted when those indexes are larger than the
criteria.

Although the profile shows the minimum MAD, it is risky
to select it due to DB and sensor error. Therefore, uniqueness
check process was considered additionally to check the
reliability of the selection. In the uniqueness check, two
basic steps were set to find more trustworthy position; First,
a selected profile should show obviously smaller MAD than
other candidates. Therefore, a similarity between a pair of
candidate profiles showing minimum and second minimum
MAD, and second minimum and third minimum MAD were
checked. In this study, it was assumed that the profile shows
the smallest MAD is surely reliable when the ratio of MADs
of two profiles is smaller than 80%. The criterion, 80%, was
also empirically determined based on the many tests. In the
simulation, 90% was not enough to isolate the profile, and
many profiles did not pass the criteria of 70%. Second, the
position of selected profile which passed the first condition
is verified. If the ratio of MADs is small and the position
difference between two profiles is large, it could be concluded
that the position is trustable. Otherwise, it makes sense the
position difference should be small when the ratio is large.
In this case, the position was calculated on an average of the
positions of two profiles. After considering conditions above,
the final position was determined together with the flag of
reliability. The flag 1 and 2 show the high reliability, whereas
flag 10 and 11 indicates the low reliability. Additionally, an
exceptional condition (flag 5) is constrainingly added to
prevent the non-correction for a long time due to small Ot

and 0z.

Step 1) Generate Candidate Profiles
&cal v

Fig. 2. Flow-chart of the profile matching algorithm
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2.3 Combination of positions from filter and

profile matching algorithm

The final solution from the combination of EKF and profile
matching is calculated by updating the estimates from EKF
with estimates from the profile matching through weight
average at every 10 seconds. The weight of the solution of
the EKF and the profile matching is determined considering
position difference between the EKF and the profile matching,
profile flag, and roughness of profile. Also, the variance for
the position from the profile is assigned rather heuristically
to update the P matrix of EKF to reflect the change of the
position by the combination of EKF and profile matching.

When the position difference is smaller than 10m, the final
position and its variance (P matrix) are determined on the
average assuming the uncertainty of position from the profile
is 10m.

If the position difference is larger than 45m which is
the interval in the longitude direction, the profile flag and
roughness of the profile are additionally considered. In case
the profile flag is 1, it is assumed that the position from the
profile matching is more trustworthy so that the weight of the
profile and the filter is allocated to be 3 and 1, respectively.
If the profile flag is 2 or 5, the weight is switched to be 1
and 3. Because position difference is smaller than 45m, the
uncertainty of the profile position is supposed to be 45m. In
the previous chapter, the profile matching does not update
the position when the profile flag is 10 or 11. However,
combining filter based position with profile solution would
be a better option to bind the wrong or over-correction of the
filter. Especially, the horizontal error decreases significantly
when the position from filter and profile locates opposite side
with respect to the INS-indicated position. Thus, condition
for the profile flag 10 and 11 is added. If roughness is larger
enough (Or is larger than 30 and Oz is larger than 15), the
weight is assumed to be same as flag 2, but the uncertainty of
profile is set to be 67.5m which is 1.5 times larger than 45m. If
not, the weight is adjusted to be 5 and 1, and the uncertainty
of the profile is set to be 90m.

Moreover, flag 10 and 11 frequently occur when the
position difference of the latitude or longitude is larger than
45m. Thus, only the roughness of the profile is considered

to allocate the weights and uncertainty. If the roughness of
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the profile is large, the weight is applied to be 10 and 1, and
the precision of 180m is set as many epochs show more than
90m of position difference. Otherwise, the final position is
determined to select the filter based position, and the P matrix
of the filter is doubled to give more uncertainty to the EKF
solution. Eq. (4) shows the way to determine the final position
and P matrix, and the allocated weight and the precision of
profile is summarized in Table 1. In the equation and table,
&, 4 are the latitude and longitude of the vehicle, P indicates

the position part of P matrix.

cl)new = (Wfilter X ¢filter + Wprofile X cl)pmfile)/(VVfilter + Wprofile)

Anew = (Wfilter X Afilter + Wprofile X Aprofile)/(Wfilter + Wprofile) (4)

Pnew = (Wfilter X Pfilter + Wprofile X Pprofile)/(wfilter + Wprofile)

Again, there is no alternative but to allocate the weight
and precision of the profile empirically due to inconsistency
in geophysical data and each algorithm. Therefore, numerous
simulation tests were conducted to find the most suitable values
(e.g. various values such as 2, 3, 5, 10 were applied for weight;

multipliers such as 1.5, 1.7, 1.8, 2 were applied to determine the

P matrix). Then, the final weight and uncertainty of the profile

in Table 1 were determined throughout trial and error.

3. Performance Analysis of Combining
Heterogeneous DB and Algorithm

The performance of combining heterogencous DB
and algorithm is evaluated through simulation tests. In
the simulation, it is supposed that the vehicle flies with
navigation-grade IMU (Inertial Measurement Unit), FTG
(Full Tensor Gradiometer) which obtains six gravity
gradients, radar altimeter as well as six gravity gradient DBs
and terrain DB. Also, a barometer and a compass are added as
complementary sensors to compensate the altitude and yaw
error of INS. The flight altitude and speed are 3,000m and
350km/h, respectively. The specification of DB and sensors
used in the simulation is described in Table 2.

A total of nine trajectories are generated from south to
north direction with a 0.25° interval from longitude 127°
to 129°. Among those nine trajectories, from trajectory no.
1 to no. 7 flies from latitudes 35° to 38° but trajectory no. 8
and no. 9 flies from latitudes 35° to 37.5° to avoid the ocean

area.

Table 1. The standard to combine filter based algorithm and the profile matching algorithm

Condition

New Position and P matrix

|¢filt€7" - Cbprofilel < 10m,

|Afilter - Ap‘rofilel <10m

VVfilter =1, Wprofile =1, Pprofile =10m

Profile flag =1

VVfilter =1, Wprofile =3, Pprofile =45m

|¢filter - q)profile' < 45m,

Profile flag=2or 5

Wfilter =3, Wp‘rofile =1, Pprofile = 45m

|Aritter — Aprofite| < 45m
filter profile

l Profile flag
=10or 11

or > 30,
oz > 15

Writer =3, Wyrorite =1, Pprofite = 67.5m

Wfilter =5, Wprofile =1, Pprofile =90m

|¢filter - q)profilel > 45m

or >30, 0'2> 15

Wrier = 10, Whprofite = 1, Pprofite = 180m

or
|Afilter - Aprofilel > 45m Else

Wfilter =1, Wprofile =0, Pfilter = Pfilter X2
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Table 2. Specification of DB and Sensor for GGRN and TRN

GGRN TRN
DB resolution DB precision Sensor precision DB resolution DB precision Sensor precision
[arcsec] [Eo] [Eo] [arcsec] [m] [m]
30 3 3 3 16 10

3.1 Combination of geophysical DBs using EKF

The effect of a combination of geophysical DBs is evaluated
by comparing the results from the GGRN, TRN and GGTRN.
The performance is evaluated with the standard deviation of
two-dimensional position error with respect to the simulated
true trajectory.

Table 3 shows the positioning errors each trajectory in
the GGRN, TRN and GGTRN. In the case of GGRN, the
horizontal precision appears from 53m to 193m and the
average horizontal precision is about 115m. TRN shows better
performance in the trajectory no. 1 to no. 7 (except trajectory
no. 2) than GGRN. However, trajectory no. 8 and no. 9 which
start a flight in the plain area and pass abruptly changing
region do not compensate the INS error properly so that the
horizontal error of the two trajectories is larger than the pure
navigation solutions. It is already pointed out the weakness of
TRN which originates in the use of only one terrain difference
as a measurement to compensate the horizontal position error
of INS. Therefore, it is difficult to conclude that TRN shows
better performance than GGRN although the average of TRN
except the two trajectories is about 54m. The last column in
Table 3 shows the navigation results from GGTRN which use
both gravity gradient and terrain DB. Many trajectories (except
the trajectory no. 8 and 9) show improved results. It should be

noted that those two trajectory shows divergence in TRN and

adding gravity gradient does not improve the divergence in
positioning. The average horizontal error except the diverging
trajectories is about 21m.

The largest improvement due to a combination of
geophysical DBs is shown in trajectory no. 2. The horizontal
error of GGRN and TRN are about 193m and 295m, but the
horizontal error decreased to 22.630m in GGTRN. It is found
that the navigation error of both GGRN and TRN is getting
larger in the starting zone and after 1800 seconds of flight,
respectively (Fig. 3). However, the large error of GGRN in
the starting zone is bound by the and GGRN makes a positive
effect on reducing horizontal error when the horizontal error
of TRN increases from 1800 seconds. As a result, GGTRN
shows much stable navigation performance over the whole

trajectory.

300

GGRN
250 | TRN i
GGTRN

200 |

150 |

Horizontal Error [m]
2
L

50 ./\ W\V\ 1
0 o THY it ™7 I L
0 500 1000 1500 2000 2500 3000 3500

Time [sec]

Fig. 3. Horizontal error from GGRN, TRN and GGTRN
in the trajectory no. 2

Table 3. Navigation results of filter based algorithm (GGRN, TRN, GGTRN)

Traj. no. GGRN TRN GGTRN Traj. no. GGRN TRN GGTRN
1 192.337 22.821 63.714 6 71.020 15.058 16.310
2 192.678 294.579 22.630 7 87.817 16.227 13.321
3 52.727 11.092 10.985 8 141.560 36976.350 4472.651
4 41.972 9.577 9.847 9 64.557 8272.175 1004.115
5 187.572 7.199 8.644 average 114.693 53.793* 20.779*

* means the average of horizontal error when trajectory showing divergence is excluded
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Of course, not all trajectories generate better navigation
results in GGTRN. Among nine trajectories, only three
trajectories show more precise results. However, it should
be mentioned that the magnitude of degradation is not
that big. Moreover, the horizontal position error decreases
significantly compared to results from GGRN. Therefore,
it could be stated that the combination of geophysical DBs

makes a positive effect on the navigation results.

3.2 Profile matching algorithm

The results from the profile matching are summarized
in Table 4. The horizontal error of the profile matching
distributes from 40m to 106m, and its average is about 67m.
While the results from the filter based algorithm show some
inconsistent performance in each trajectory, the profile
matching generally shows much consistent positioning
results with no divergence.

The possibility of the complement of different navigation
algorithms can be seen in Fig. 4. After starting a flight, the
horizontal error increases in the time window between 300
seconds and 500 seconds when vehicle flies above smoothly
changing area. Also, those navigation errors get larger
from 800 seconds in the abruptly changing area due to lack
of linearity between measurement and states. Therefore,
the overall navigation error of TRN and GGTRN in the
trajectory no. 8 is calculated larger than lkm. However,
this kind of irregular variation in the terrain DB could be
feature points for bounding navigation error positively in
the profile matching algorithm. The horizontal error in
the profile matching increased from 800 seconds to 1800
seconds, but the maximum error is bound to the few hundred
meters. Accordingly, the overall navigation performance is

determined as 100m level.

T T T T
— GGTRN
TRN
PROFILE

Horizontal Error [m]
&
]
]
T

0 500 1000 1500 2000 2500 3000
Time [sec]

2500

2000 L

1500 |

1000 |

Terrain [m]

500 |

L L L
1500 2000 2500 3000

Time [sec]

!
0 500 1000

Fig. 4. Horizontal error and the terrain of the trajectory
no. 8

3.3 Combination of positions from filter and
profile matching algorithm

As the last step, GGTRN and the profile matching
algorithm have been combined, and its performance is
compared to the best result for each trajectory from all filter
based and the profile matching algorithm (Table 5). In Table
S, a trajectory which shows better performance through
a combination of geophysical data and the algorithm is
marked with *, and performance ratio is calculated by
dividing the navigation result from a combination algorithm
with the one showing the most stable results among GGRN,
TRN, GGTRN, and the profile matching. The average
of horizontal error over whole trajectories, 17.9m, is the
most precise one compared to the filter based algorithms
and the profile matching. Of course, not all trajectories
generate improved navigation results; a total number

of four trajectories show better performance. Although

Table 4. Navigation results of the profile matching algorithm

Traj. no. 1 2 3 4 5
Horizontal error [m] 66.438 90.555 65.529 49.100 40.391

Traj. no. 6 7 8 9 average
Horizontal error [m] 47718 50.077 106.079 89.316 67.245
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Table 5. Navigation results of a combination of GGTRN with the profile matching

Performance Ratio
[%o]

Traj. Horizontal error
no. [m]

Performance Ratio
[%6]

Traj. Horizontal error
no. [m]

1* 17.946 127.165

6 16.625 90.574

2% 22.567 100.279

7 22.496 59.215

3 16.774 65.488

8* 17.932 591.563

4 14.105 67.898

9% 19.696 327767

5 12.826 56.128

17.885

Average

* indicates the trajectory which shows better performance

other five trajectories do not show a large improvement
compared to GGRN, TRN or GGTRN, however, the strength
of the final combination algorithm should be emphasized
regarding stability. As shown in Table 5, the results from
the final combination algorithm have a range of 14-23m of
horizontal precision, and there is not a large difference in the
performance among trajectories. In addition, no divergence
occurs. It should be reminded that the P matrix was tuned
considering the potential precision of the profile matching.
When only the position is re-determined without tuning the
P matrix, the average of horizontal error is about 28.610m.
Judging from the simulation tests, tuning of P matrix seems
to guarantee more stable navigation results in a combination
of algorithms, although the magnitude and the weights are
determined empirically.

To examine the advantage of a combination of geophysical
data and algorithm, the horizontal results in two trajectories,
trajectory 8 showing divergence in GGTRN and trajectory
5 showing poorer results in a combination algorithm, are
plotted in Fig. 5. As already found before, navigation results
from GGTRN diverge from 300 seconds in trajectory no. 8
due to the non-linearity problem. However, the horizontal
error is bound by combining the profile matching solution
with GGTRN so that overall stable navigation results are
obtained.

In contrast, trajectory no. 5 shows the best performance
in the TRN, as 7.199m. When combining TRN with gravity
gradient or GGTRN with the profile matching, the horizontal
error is degraded to the 8.644m and 12.826m, respectively. It
is because GGRN and the profile matching algorithm have a

relatively larger horizontal error than TRN, as shown in the
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Fig. 5. Horizontal error of each navigation algorithm
(Up: trajectory no.8, Bottom: trajectory no.5)

figure. However, about 188m of horizontal error of GGRN
and 40m error of the profile matching decreases significantly,
and 13m of horizontal error in a combination algorithm is not
that large. Therefore, it could be stated that the combination

algorithm guarantees the stability.

4, Conclusions

To complement the weakness of filter based algorithm
using sole geophysical DB, a new type of algorithm which
combines heterogeneous geophysical DBs and algorithms
was suggested, and its performance was evaluated. Filter

based algorithm was modified to use both gravity gradient
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and terrain data at the same time, and the profile matching
algorithm which finds a position of the vehicle by comparing
stored terrain information with DB was constructed. Then,
the final position of the vehicle was determined on the basis
of a combination of two positions from filter based and the
profile matching algorithm considering its reliability and the
local roughness.

The simulation results show that GGTRN which uses
gravity gradient and terrain generally generates more
stable navigation results than GGRN or TRN. Especially,
the performance in one trajectory which shows 192.7m and
294.6m of error in GGRN and TRN is improved to 22.6m.

In the case of the profile matching algorithm, the local
terrain roughness and the uniqueness of trajectories were
checked to find the most reliable trajectory. In the simulation,
the average of horizontal error over the whole trajectories is
calculated as 67.2m and the two trajectories which diverge
on the filter based algorithm are successfully bound to the
100m level.

When combining GGTRN with the profile matching
algorithm, the average of horizontal error is calculated as
17.9m. It is the most stable navigation result compared to those
from other algorithms(e.g. GGRN, TRN, GGTRN and the
profile matching algorithm) constructed in this study. Also,
no divergence occurs over whole trajectories. Especially, two
trajectories which show poorer navigation results than pure
INS in the filter based algorithm show about a 20m level
of precision and it is also better than the results from the
profile matching. However, the improvement of performance
does not occur in all trajectories; five trajectories generate
better navigation results in TRN or GGTRN. Therefore,
investigations on other methodologies such as combining
geophysical data as a form of decentralized filter or selecting
more reliable position from different algorithm could be

studied in the future.
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