• Title/Summary/Keyword: implicit method

Search Result 923, Processing Time 0.027 seconds

Analysis of 1-D Free boundary Problem Using Implicit Moving-Least-Squares Difference Method (Implicit 이동최소제곱 차분법을 이용한 1차원 자유경계문제의 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.48-51
    • /
    • 2010
  • 본 논문에서는 자유경계문제 해석을 위해 정확도가 향상된 implicit 이동최소제곱 차분법을 제시한다. 계면경계에 대한 implicit 정의로 인해 비선형 시스템이 구성되고, 매 해석단계마다 절점해와 계면경계의 위치를 반복계산을 통해 찾는다. 계면경계 결정시 속도항을 한 단계 뒤로 지연시켜 explicit하게 근사적으로 계산하던 기존 방법에 비해 계면경계의 위치를 더 정확하게 계산할 수 있고, 결과적으로 해의 정확도가 향상되었다. 계면경계 위치값이 비교적 빠른 속도로 수렴하기 때문에 많은 반복계산이 필요치 않다. 수치예제를 통해 기존의 방법으로 계산한 결과와 비교하여 새롭게 개발한 implicit 방법의 향상된 정확도를 보였다.

  • PDF

Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method (원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의)

  • Park, Ki-Doo;Lee, Kil-Seong;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF

An implicit decoupling method for unsteady RANS computation (비정상 RAMS 계산을 위한 내재적 분리 방법)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.704-708
    • /
    • 2000
  • A new efficient numerical method for computing unsteady, incompressible flows, DRANS (Decoupled Reynolds-Averaged Navier-Stokes), is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used fer both the diffusion and convection terms. is adopted. Based on decomposition method, the velocity-turbulent quantity decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully-implicit time advancement scheme. Since the iterative procedures for the momentum, ${\kappa}\;and\;{\varepsilon}$ equations are not required, the components decouplings bring fourth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to turbulent boundary layer with local forcing.

  • PDF

On Calculating Eigenvalues In Large Power Systems Using Modified Arnoldi Method

  • Lee, Byong-Jun;Iba, Kenjl;Hirose, Michio
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.734-736
    • /
    • 1996
  • This paper presents a method of calculating a selective number of eigenvalues in power systems, which are rightmost, or are largest modulus. The modified Arnoldi method in conjunction with implicit shift OR-algorithm is used to calculate the rightmost eigenvalues. Algorithm requires neither a prior knowledge of the specified shifts nor the calculation of inverse matrix. The key advantage of the algorithm is its ability to converge to the wanted eigenvalues at once. The method is compared with the modified Arnoldi method combined with S-matrix transformation, where the eigenvalues having the largest modulus are to be determined. The two methods are applied to the reduced Kansai system. Convergence characteristics and performances are compared. Results show that both methods are robust and has good convergence properties. However, the implicit shift OR method is seen to be faster than the S-matrix method under the same condition.

  • PDF

Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

  • Crivellini, Andrea;Nigro, Alessandra;Colombo, Alessandro;Ghidoni, Antonio;Noventa, Gianmaria;Cimarelli, Andrea;Corsini, Roberto
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

Implementation Of User Preference Estimation Algorithm Using Implicit Feedback (Implicit Feedback을 통한 선호도 예측 알고리즘 구현)

  • Jang, Jeong-Rok;Kim, Yon-Gu;Kim, Do-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.641-642
    • /
    • 2008
  • In this paper, we propose a new approach for the implicit rating algorithm of finding user's intense and preference to the contents on the web. Although the explicit method dig out the user preference of specific contents based on the user's intervention, we propose the implicit method obtaining the user preference according to the user's behavioral patterns on the web implicitly and automatically without the user's intervention. The implementation results show that the proposed approach is highly valuable for supporting recommender systems in conjunction with the users lifestyle.

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.20-27
    • /
    • 2000
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way n-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and 3-D F-5 wing were investigated.

  • PDF

A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field. (다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구)

  • Gwon Chang-O;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

Parallelization of an Unstructured Implicit Euler Solver (내재적 방법을 이용한 비정렬 유동해석 기법의 병렬화)

  • Kim J. S.;Kang H. J.;Park Y. M.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.193-200
    • /
    • 1999
  • An unstructured implicit Euler solver is parallelized on a Cray T3E. Spatial discretization is accomplished by a cell-centered finite volume formulation using an unpwind flux differencing. Time is advanced by the Gauss-Seidel implicit scheme. Domain decomposition is accomplished by using the k-way N-partitioning method developed by Karypis. In order to analyze the parallel performance of the solver, flows over a 2-D NACA 0012 airfoil and a 3-D F-5 wing were investigated.

  • PDF