• 제목/요약/키워드: implant-bone interface

검색결과 152건 처리시간 0.028초

골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구 (A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF

치과 임플란트에서의 분자생물학적 연구 (MOLECULAR BIOLOGY IN DENTAL IMPLANT)

  • 지유진;류동목;이덕원
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

난소절제로 유도된 골다공증 흰쥐에서 implant 주위 조직 반응에 관한 실험적 연구 (EXPERIMENTAL STUDY OF PERI-IMPLANT TISSUE REACTION IN OVARIECTOMIZED OSTEOPOROTIC RATS)

  • 조인호;김종여;박수성;박종섭;임헌송
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.183-198
    • /
    • 1998
  • This study was designed to investigate the peri-implant tissue reaction in ovariectomized osteoporotic female rats, and to evaluate effects of estrogen, calcitonin, parathyroid hormone on the bone - implant interface in osteoporotic rats. 120 Sprague - Dawley rats were used in this experiments. Osteoporosis was induced by bilateral ovariectomy. They were divided 5 groups : sham-operated control group(Sham), ovariectomized group (OVX), OVX and estrogen treated group (OVX+E), OVX and PTH treated group (OVX+PTH), and OVX and calcitonin treated group (OVX+CT). Eight weeks after ovariectomy, two titanium screw implants were inserted into the left tibia of each rat. Eight weeks after the insertion of the implants, the periotest values (PTV) of implant were examined, and the rats were sacrificed, and examined the reaction of bone tissue surrounding the implant both histologically and histomorphometrically. The bone density and ash weight of opposite right tibia were examined. Over 40 rats were fractured on left tibia that was implant inserted. On histologically finding, all groups were osseointegrated well, especially in OVX+PTH group. In OVX group, tibial cortical bone showed many large harversian canal and microfracture lines. The OVX+PTH group showed the lowest mean PTV (-2.33) (p<0.05), and the hightest mean bone - implant contact percentage (89%) (p>0.05). But the OVX+CT group showed the highest mean bone density ($5.45mg/cm^3$) and ash weight (56.12%) (p<0.05). The results indicate that PTH treatment enhances osseointegration of implant in OVX rats, and CT treatment depresses bone turnover and prevent the development of osteopenia in OVX rats.

  • PDF

Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review

  • Hosseini-Faradonbeh, Seyed Aref;Katoozian, Hamid Reza
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권3호
    • /
    • pp.182-202
    • /
    • 2022
  • PURPOSE. The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS. A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS. By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION. Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.

임플란트 식립 후 초기 안정성의 변화 (Initial Changes of Implant Stability from Installation during Early Bone Healing)

  • 박찬진;김대곤;조리라
    • 구강회복응용과학지
    • /
    • 제29권3호
    • /
    • pp.272-279
    • /
    • 2013
  • 골치유 기간 중 임플란트-골 계면에서 일정 수준 이상의 미세동요가 발생하게 되면 임플란트의 골유착이 방해받게 되므로 임플란트 식립 후 초기 골반응에 관해 임플란트 안정성은 하나의 지표가 된다. 본 연구의 목적은 임플란트 식립 후 전향적인 연구를 통해 초기 임플란트 안정성 변화를 추적하여 골치유 양상을 추론하고자 하였다. 총 26명의 환자에게 식립된 30개의 임플란트를 대상으로 하악골에 1회법으로 식립 직후 1주 간격으로 12주간 공진주파수분석을 시행하여 초기 안정성의 변화를 구하였으며 식립 직후와 1개월 간격으로 변연골 흡수 정도를 방사선학적 방법으로 측정하였다. 식립 직후와 각 치유기간 동안의 ISQ값 비교에서 식립 4주에서 6주사이에 골질에 따른 차이를 보였으나(P<0.05), 6주 이후에는 골질군 간에는 임플란트 안정성 변화에 차이가 없었다(P>0.05). 방사선학적 검사에서는 변연골의 차이가 관찰기간내에 유의하게 변화하지 않았다(P>0.05). 임플란트 식립 후 초기 골치유과정은 골흡수과정에 연속적인 과정으로 4주 이후 바람직한 골치유과정이 진행됨을 공진주파수분석으로 관찰할 수 있었다.

Hydroxylapatite 및 Titanium Plasma Spray 피복임프란트와 골조직 계면의 조직학적 비교 연구 (HISTOLOGIC COMPARATIVE STUDY ON THE BONE-IMPLANT INTERFACE OF HYDROXYLAPATITE AND TITANIUM PLASMA SPRAY COATED IMPLANTS)

  • 조주온;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제33권3호
    • /
    • pp.492-516
    • /
    • 1995
  • This study evaluated the responses of mandibular bones of mongrel dogs to loaded hydro xylapatite(HA) and titanium plasma spray(TPS) coated endosseous dental implants, using unloaded ones as the control group. after HA and TPS coated implants were implanted, their bone reactions with vital bones have been observed with light and scanning electron microscope(SEM) at the three periods of the 4th, 12th and 20th week. These reactions have been also compared in a histomorphometric method. The elemental distribution state of implants and the interface neighboring bone tissues have been measured with the energy dispersive analysis of X-rays(EDAX). The following results were obtained ; 1. The light microscopic analysis showed osseointegration in both the control group and the occlusal force loaded group ; Its degree was shown to be higher in the long-maintained and occlusal force groups. 2. The SEM analysis showed that both groups had osseointegration, In the case of TPS-coated implants, the coated layer was divided on the bone interface. In the case of HA-coated implants, there appeared a division between the metal and coated interface. 3. In the histomorphometric analysis, the measured ratio contaction bone of TPS-coated implants was $70{\pm}19$% in the case of no occlusal force ; it was $84{\pm}13$% in the case of occlusal force. The measured ratio contacting bone of HA-coated implants was $75{\pm}18$% in the case of no occlusal force ; it was $94{\pm}9$% in the case of occlusal force. However, there was no significant difference statistically(p>0.05). 4. Both groups showed that the ratio of calcium and phosphorous increased more in the bone tissues than on the bone to implant interface.

  • PDF

임플란트 매식 시 수직골 높이에 따른 응력분석 (Stress analysis according to the vertical bone level in the implant placement)

  • 김민호;박영록;계기성
    • 구강회복응용과학지
    • /
    • 제18권4호
    • /
    • pp.301-311
    • /
    • 2002
  • The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different vertical bone level of implant fixture. The two kinds of finite element models were designed according to vertical bone level around fixture ($4.0mm{\times}11.5mm$). The cemented crowns for mandibular first and second molars were made. Three- dimensional finite element model was created with the components of the implant and surrounding bone. Vertical loads were applied with force of 200N distributed within 0.5mm radius circle from the center of central fossa and distance 2mm and 4 mm apart from the center of central fossa. Von-Mises stresses were recorded and compared in the supporting bone, fixtures, abutment screws, and crown. The results were as following : (1) In vertical loading at the center circle of central fossa on model 1 and 2, the difference from vertical bone in implant placement did not affect the stress pattern on all components of implant except for crown. (2) With offset distance incerasing and the bone level of implant decreasing, the concentration of stress occured in the buccal side of long crown, around the buccal crestal bone, and on the fixture- abutment interface. As a conclusion, the research showed a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the vertical level of bone around fixture was different. Since the same vertical bone bed has more benefits than the different bone bed around fixtures, it is important to prepare a same vertical level of bone bed for the success of implants under occlusal loads.

Characteristics of contact and distance osteogenesis around modified implant surfaces in rabbit tibiae

  • Choi, Jung-Yoo;Sim, Jae-Hyuk;Yeo, In-Sung Luke
    • Journal of Periodontal and Implant Science
    • /
    • 제47권3호
    • /
    • pp.182-192
    • /
    • 2017
  • Purpose: Contact and distance osteogenesis occur around all endosseous dental implants. However, the mechanisms underlying these processes have not been fully elucidated. We hypothesized that these processes occur independently of each other. To test this, we used titanium (Ti) tubes to physically separate contact and distance osteogenesis, thus allowing contact osteogenesis to be measured in the absence of possible triggers from distance osteogenesis. Methods: Sandblasted and acid-etched (SLA) and modified SLA (modSLA) implants were used. Both types had been sandblasted with large grit and then etched with acid. The modSLA implants then underwent additional treatment to increase hydrophilicity. The implants were implanted into rabbit tibiae, and half were implanted within Ti tubes. The bone-to-implant contact (BIC) ratio was calculated for each implant. Immunohistochemical analyses of bone morphogenetic protein (BMP)-2 expression and new bone formation (Masson trichrome stain) were performed. Results: The implants outside of Ti tubes were associated with good bone formation along the implant surface. Implantation within a Ti tube significantly reduced the BIC ratio (P<0.001). Compared with the modSLA implants, the SLA implants were associated with significantly higher BIC ratios, regardless of the presence or absence of Ti tubes (P=0.043). In the absence of Ti tubes, the bone adjacent to the implant had areas of new bone formation that expressed BMP-2 at high levels. Conclusions: This study disproved the null hypothesis and suggested that contact osteogenesis is initiated by signals from the old bone that undergoes distance osteogenesis after drilling. This signal may be BMP-2.

임플란트 매식시 골형성단백질 및 탈회동종골 사용에 따른 골재생 및 계면에 대한 연구 (EVALUATION OF THE INTERFACES BETWEEN IMPLANTS AND REGENERATED BONE USING BONE MORPHOGENETIC PROTEIN AND DEMINERALIZED FREEZE-DRIED BONE)

  • 강상규;이종호;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권1호
    • /
    • pp.24-39
    • /
    • 2000
  • Various methods and graft materials have been used to fill in the defect adjacent to the implants and considered as clinically acceptable. But it is not clear whether the regenerated bone increases the implant-bone contact and supports the implant. The purpose of this study is to evaluate regenerated bone surrounding implants using bone morphogenetic protein(BMP) and demineralized freeze-dried bone(DFDB), and the interfaces between implants and regenerated bone. bBMP was extracted and partially purified from the bovine bone matrix using heparine chromatography. Demineralized freeze-dried bone was made from the dog. Inactive insoluble collagenous bone matrix(IBM) of dog was used as carrier of bBMP. Interfaces of titanium coated epoxy resin implants were processed for demineralized section for transmission electron microscopy(TEM) and those of screw type implants were for nondemineralized section for light and fluoromicroscopic examination. Implants were inserted in the inferior border of mandible of adult dogs and artificial bony defects($3{\times}3{\times}4mm$) were made at the mesial and distal side of implants. Defects were filled with BMP(BMP group) and DFDB(DFDB group). For the fluoromicroscopic examination, the fluorescent dyes(oxytetracycline, calcein green, alizarin red) were injected 2, 4, 6, 8, 12 weeks after implantation. The experimental animals were sacrificed at the 6th and the 12th week and their mandible were extirpated and processed for examination with light microscopy, fluoromicroscopy and TEM. The obtained results were as follows : 1. By the light microscopic findings, the defects were filled with woven bone at the 6th week and compact bone at the 12th week, and the osseointegrations were seen in both groups. There was no histological difference between them. 2. On the basis of the histomorphometric analysis, BMP group(6th week: 40.25%, 12th week: 56.04%) had higher bony contact ratio than DFDB group(38.37%, 42.63%). There was significant difference between two groups at the 12th week(p<0.05). 3. The amount of bone formation in BMP group was more prominent than in DFDB group. Significant difference was noted among two groups at the 6th and the 8th week(p<0.05). 4. By the transmission electron microscopic findings, $0.4-2{\mu}m$ soft tissue layer was found in adjacent to the interfaces and over the collagen fibrils of bone at the 6th week. However, about 100nm amorphous layer was noted at the interface or collagen fibrils directly extended to the titanium surface at the 12th week. There was no significant difference between two groups. 5. These results suggest that BMP and DFDB can be used as good graft materials in the regeneration of bone adjacent to implant, and BMP is more valuable as a bone inducer than DFDB.

  • PDF