Browse > Article
http://dx.doi.org/10.4047/jap.2022.14.3.182

Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review  

Hosseini-Faradonbeh, Seyed Aref (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Katoozian, Hamid Reza (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Publication Information
The Journal of Advanced Prosthodontics / v.14, no.3, 2022 , pp. 182-202 More about this Journal
Abstract
PURPOSE. The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS. A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS. By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION. Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.
Keywords
Bone remodeling; Fatigue; Optimization; Sensitivity analysis; Reliability;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bordin D, Bergamo ETP, Fardin VP, Coelho PG, Bonfante EA. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. J Mech Behav Biomed Mater 2017;71:244-9.   DOI
2 Covani U, Ricci M, Tonelli P, Barone A. An evaluation of new designs in implant-abutment connections: a finite element method assessment. Implant Dent 2013;22:263-7.   DOI
3 Abasolo M, Aguirrebeitia J, Vallejo J, Albizuri J, Coria I. Influence of vertical misfit in screw fatigue behavior in dental implants: a three-dimensional finite element approach. Proc Inst Mech Eng H 2018;232:1117-28.   DOI
4 Bayata F, Yildiz C. The mechanical behaviors of various dental implant materials under fatigue. Adv Mater Sci Eng 2018:5047319.
5 Prados-Privado M, Sergio G, Rojo R, Prados-Frutos JC. Complete mechanical characterization of an external hexagonal implant connection: in vitro study, 3D FEM and probabilistic fatigue. Med Biol Eng Comput 2018;56:2233-44.   DOI
6 Manea A, Baciut G, Baciut M, Pop D, Comsa DS, Buiga O, Trombitas V, Colosi H, Mitre I, Bordea R, Manole M, Lenghel M, Bran S, Onisor F. New dental implant with 3d shock absorbers and tooth-like mobility-prototype development, finite element analysis (FEA), and mechanical testing. Materials (Basel) 2019;12:3444.   DOI
7 Sahin SC. Static and dynamic stress analysis of standard- and narrow-diameter implants: a 3D finite element analysis. Int J Oral Maxillofac Implants 2020;35:e58-68.   DOI
8 Bayata F, Yildiz C. The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis. Eng Fail Anal 2020;110:104445.   DOI
9 Nicholson JW. Titanium alloys for dental implants: a review. Prosthesis 2020;2:100-16.   DOI
10 Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases 2015;3:52-7.   DOI
11 Nokar S, Jalali H, Nozari F, Arshad M. Finite element analysis of stress in bone and abutment-implant interface under static and cyclic loadings. Front Dent 2020;17:1-8.
12 Wang Y, Chen X, Zhang C, Feng W, Zhang P, Chen Y, Huang J, Luo Y, Chen J. Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments. Proc Inst Mech Eng H 2019;233:170-80.
13 Bataineh K, Al Janaideh M. Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load. Clin Implant Dent Relat Res 2019;21:1206-17.   DOI
14 Prados-Privado M, Ivorra C, Martinez-Martinez C, Gehrke SA, Calvo-Guirado JL, Prados-Frutos JC. A finite element analysis of the fatigue behavior and risk of failure of immediate provisional implants. Metals 2019;9:535.   DOI
15 Armentia M, Abasolo M, Coria I, Albizuri J. Fatigue design of dental implant assemblies: a nominal stress approach. Metals 2020;10:744.   DOI
16 Lee H, Jo M, Noh G. Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis. Comput Methods Programs Biomed 2021;200:105863.   DOI
17 Zhang X, Mao J, Zhou Y, Ji F, Chen X. Study on statics and fatigue analysis of dental implants in the descending process of alveolar bone level. Proc Inst Mech Eng H 2020;234:843-53.   DOI
18 Haase K, Rouhi G. Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli. Comput Biol Med 2013;43:1748-57.   DOI
19 Bergamo ETP, Yamaguchi S, Coelho PG, Lopes ACO, Lee C, Bonfante G, Benalcazar Jalkh EB, de Araujo-Junior ENS, Bonfante EA. Survival of implant-supported resin-matrix ceramic crowns: In silico and fatigue analyses. Dent Mater 2021;37:523-33.   DOI
20 Colomina LE. Immediate loading of implant-fixed mandibular prostheses: a prospective 18-month follow-up clinical study-preliminary report. Implant Dent 2001;10:23-9.   DOI
21 Kim JE, Shin JM, Oh SO, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. The three-dimensional microstructure of trabecular bone: analysis of site-specific variation in the human jaw bone. Imaging Sci Dent 2013;43:227-33.   DOI
22 Koike M, Lockwood PE, Wataha JC, Okabe T. Initial cytotoxicity of novel titanium alloys. J Biomed Mater Res B Appl Biomater 2007;83:327-31.
23 Liu X, Chen S, Tsoi JKH, Matinlinna JP. Binary titanium alloys as dental implant materials-a review. Regen Biomater 2017;4:315-23.   DOI
24 Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing 2006;35:27-31.
25 Ovesy M, Voumard B, Zysset P. A nonlinear homogenized finite element analysis of the primary stability of the bone-implant interface. Biomech Model Mechanobiol 2018;17:1471-80.   DOI
26 Gao X, Fraulob M, Haiat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019;16:20190259.   DOI
27 Gallucci GO, Hamilton A, Zhou W, Buser D, Chen S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin Oral Implants Res 2018;29:106-34.
28 Horiuchi K, Uchida H, Yamamoto K, Sugimura M. Immediate loading of Branemark system implants following placement in edentulous patients: a clinical report. Int J Oral Maxillofac Implants 2000;15:824-30.
29 Omori M, Sato Y, Kitagawa N, Shimura Y, Ito M. A biomechanical investigation of mandibular molar implants: reproducibility and validity of a finite element analysis model. Int J Implant Dent 2015;1:10.   DOI
30 Gapski R, Wang HL, Mascarenhas P, Lang NP. Critical review of immediate implant loading. Clin Oral Implants Res 2003;14:515-27.   DOI
31 Longva A, Loschner F, Kugelstadt T, Fernandez-Fernandez JA, Bender J. Higher-order finite elements for embedded simulation. ACM Trans Graph 2020;39:1-14.
32 Lopez B, Arruda MRT, Almeida-Fernandez L, Castro L, Silvestre N, Correia JR. Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials. Composite Part C: Open Access 2020:1:100006.   DOI
33 Flanagan D. Osseous remodeling around dental implants. J Oral Implantol 2019;45:239-46.   DOI
34 Tortorelli DA, Michaleris P. Design sensitivity analysis: overview and review. Inverse Probl Sci Eng 1994;1:71-105.   DOI
35 Blazquez-Hinarejos M, Ayuso-Montero R, Jane-Salas E, Lopez-Lopez J. Influence of surface modified dental implant abutments on connective tissue attachment: a systematic review. Arch Oral Biol 2017;80:185-92.   DOI
36 Ding X, Zhu XH, Liao SH, Zhang XH, Chen H. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont 2009;18:393-402.   DOI
37 De Martinis M, Sirufo MM, Polsinelli M, Placidi G, Di Silvestre D, Ginaldi L. Gender differences in osteoporosis: a single-center observational study. World J Mens Health 2021;39:750-9.   DOI
38 Aguilar C, Arancibia M, Alfonso I, Sancy M, Tello K, Salinas V, De Las Cuevas F. Influence of porosity on the elastic modulus of Ti-Zr-Ta-Nb foams with a low Nb content. Metals 2019;9:176.   DOI
39 Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 2009;19:319-38.   DOI
40 Paracchini L, Barbieri C, Redaelli M, Di Croce D, Vincenzi C, Guarnieri R. Finite element analysis of a new dental implant design optimized for the desirable stress distribution in the surrounding bone region. Prosthesis 2020;2:225-36.   DOI
41 Carpenter RD, Klosterhoff BS, Torstrick FB, Foley KT, Burkus JK, Lee CSD, Gall K, Guldberg RE, Safranski DL. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: a finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater 2018;80:68-76.   DOI
42 Abbasi N, Hamlet S, Love RM, Nam-Trung N. Porous scaffolds for bone regeneration. J Sci Adv Mater Dev 2020;5:1-9.
43 Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette CH, Haiat G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J Orthop Res 2021;39:1174-83.   DOI
44 Kong L, Gu Z, Li T, Wu J, Hu K, Liu Y, Zhou H, Liu B. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. Int J Prosthodont 2009;22:607-15.
45 Wu AY, Hsu JT, Chee W, Lin YT, Fuh LJ, Huang HL. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: in-vitro experimental and three-dimensional finite element analyses. J Formos Med Assoc 2016;115:794-800.   DOI
46 Ueda N, Takayama Y, Yokoyama A. Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. J Prosthodont Res 2017;61:324-32.   DOI
47 Yang J, Xiang HJ. A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. J Biomech 2007;40:2377-85.   DOI
48 Perez M. Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions. Comput Methods Programs Biomed 2012;108:1277-86.   DOI
49 Hasan I, Roger B, Heinemann F, Keilig L, Bourauel C. Influence of abutment design on the success of immediately loaded dental implants: experimental and numerical studies. Med Eng Phys 2012;34:817-25.   DOI
50 Tsai YT, Wang KS, Woo JC. Fatigue life and reliability evaluation for dental implants based on computer simulation and limited test data. J Mech Eng Sci 2012;227:554-64.   DOI
51 Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater 2012;100:1044-52.
52 Ali B, Chikh EBO, Meddah HM, Merdji A, Bouiadjra BAB. Effects of overloading in mastication on the mechanical behaviour of dental implants. Mater Des 2013;47:210-7.   DOI
53 Hernandez BA, Paterno A, Sousa EAC, De Oliveira Freitas JP, Foschini CR. Fatigue analysis of dental prostheses by finite element method (FEM). IMECE 2015;3.
54 Geringer A, Diebels S, Nothdurft FP. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis. Biomed Tech (Berl) 2014;59:501-6.   DOI
55 Ayllon JM, Navarro C, Vazquez J, Dominguez J. Fatigue life estimation in dental implants. Eng Fract Mech 2014;123:34-43.   DOI
56 Marcian P, Wolff J, Horackova L, Kaiser J, Zikmund T, Borak L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med 2018;96:157-65.   DOI
57 Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E. Failure analysis in a dental implant. Eng Fail Anal 2015;57:236-42.   DOI
58 Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20.   DOI
59 ISO 14801. Dentistry-implants-dynamic fatigue test for end osseous dental implants. International Standards Organization (ISO); Geneva; Switzerland, 2007.
60 Niroomand MR, Arabbeiki M. Effect of the dimensions of implant body and thread on bone resorption and stability in trapezoidal threaded dental implants: a sensitivity analysis and optimization. Comput Methods Biomech Biomed Engin 2020;23:1005-13.   DOI
61 Ji F, Zhang C, Chen X. Structure optimization of porous dental implant based on 3D printing. IOP Conf Ser Mater Sci Eng 2018;324:012060.
62 Prados-Privado M, Bea JA, Rojo R, Gehrke SA, Calvo-Guirado JL, Prados-Frutos JC. A new model to study fatigue in dental implants based on probabilistic finite elements and cumulative damage model. Appl Bionics Biomech 2017;2017:3726361.   DOI
63 Genna F. On the effects of cyclic transversal forces on osseointegrated dental implants: experimental and finite element shakedown analyses. Comput Methods Biomech Biomed Engin 2003;6:141-52.   DOI
64 Chen LJ, He H, Li YM, Li T, Guo XP, Wang RF. Finite element analysis of stress at the implant-bone interface of dental implants with different structures. Trans Nonferrous Met Soc Chin 2011;21:1602-10.   DOI
65 Chang CL, Chen CS, Huang CH, Hsu ML. Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys 2012;34:999-1008.   DOI
66 Chang HS, Chen YC, Hsieh YD, Hsu ML. Stress distribution of two commercial dental implant systems: a three-dimensional finite element analysis. J Dent Sci 2013;8:261-71.   DOI
67 Prados-Privado M, Prados-Frutos JC, Manchon A, Rojo R, Felice P, Bea JA. Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour. Biomed Res Int 2015;2015:825402.
68 Szajek K, Wierszycki M. Numerical verification of two-component dental implant in the context of fatigue life for various load cases. Acta Bioeng Biomech 2016;18:103-13.
69 Wu T, Fan H, Ma R, Chen H, Li Z, Yu H. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis. Mater Sci Eng C Mater Biol Appl 2017;75:297-304.   DOI
70 de la Rosa Castolo G, Guevara Perez SV, Arnoux PJ, Badih L, Bonnet F, Behr M. Mechanical strength and fracture point of a dental implant under certification conditions: a numerical approach by finite element analysis. J Prosthet Dent 2018;119:611-9.   DOI
71 Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants: A finite element analysis. J Prosthet Dent 2018;119:417-25.   DOI
72 Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Eng Reg 2020;1:6-18.   DOI
73 Topkaya H, Kaman MO. Effect of dental implant dimensions on fatigue behaviour: a numerical approach. Uludag universitesi Muhendislik Fakultesi Dergisi 2018;23:249-60.
74 Wierszycki M, Kakol W, Lodygowski T. Fatigue algorithm for dental implant. Found Civ Environ Eng 2006; 7:363-80.
75 Hasan I, Heinemann F, Aitlahrach M, Bourauel C. Biomechanical finite element analysis of small diameter and short dental implant. Biomed Tech (Berl) 2010;55:341-50.   DOI
76 Bulaqi HA, Mousavi Mashhadi M, Safari H, Samandari MM, Geramipanah F. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis. J Prosthet Dent 2015;113:548-57.   DOI
77 Bicudo P, Reis J, Deus AM, Reisa L, Vaza MF. Performance evaluation of dental implants: An experimental and numerical simulation study. Theor Appl Fract Mech 2016;85:74-83.   DOI
78 Hussein MO. Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis. J Adv Prosthodont 2013;5:333-40.   DOI
79 Oliveira H, Brizuela Velasco A, Rios-Santos JV, Sanchez Lasheras F, Lemos BF, Gil FJ, Carvalho A, Herrero-Climent M. Effect of different implant designs on strain and stress distribution under non-axial loading: a three-dimensional finite element analysis. Int J Environ Res Public Health 2020;17:4738.   DOI
80 Hong HC, Chang Y, Pan YH. The stability of implant-abutment complex with different implant-abutment connection designs, review of literature. J Oral Maxillofac Surg 2015;26:262-86.
81 Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98.   DOI
82 Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent 2003;12:306-17.   DOI
83 Jadhav L, Kapole S, Dhatrak P, Palange A. Design of experiments (DoE) based optimization of dental implants: a review. AIP Conf Proc 2021;2358:1-13.
84 Toyoshima Y, Wakabayashi N. Load limit of mini-implants with reduced abutment height based on fatigue fracture resistance: experimental and finite element study. Int J Oral Maxillofac Implants 2015;30:e10-6.   DOI
85 Shemtov-Yona K, Rittel D. Fatigue of dental implants: facts and fallacies. Dent J (Basel) 2016;4:16.   DOI
86 Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 2010;6:1640-8.   DOI
87 Kunavisarut C, Lang LA, Stoner BR, Felton DA. Finite element analysis on dental implant-supported prostheses without passive fit. J Prosthodont 2002;11:30-40.   DOI
88 Perriard J, Wiskott WA, Mellal A, Scherrer SS, Botsis J, Belser UC. Fatigue resistance of ITI implant-abutment connectors - a comparison of the standard cone with a novel internally keyed design. Clin Oral Implants Res 2002;13:542-9.   DOI
89 Kayabasi O, Yuzbasioglu E, Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 2006;37:649-58.   DOI
90 Bicudo P, Reis J, Deus AM, Reisa L, Vaza MF. Mechanical behaviour of dental implants. Procedia Struct Integr 2016;1:26-33.   DOI
91 Prados-Privado M, Prados-Frutos JC, Calvo-Guirado JL, Bea JA. A random fatigue of mechanize titanium abutment studied with Markoff chain and stochastic finite element formulation. Comput Methods Biomech Biomed Engin 2016;19:1583-91.   DOI
92 Al-Zubaidi SM, Madfa AA, Mufadhal AA, Aldawla MA, Hameed OS and Yue X-G. Improvements in clinical durability from functional biomimetic metallic dental implants. Front Mater 2020;7:106.   DOI
93 Geramizadeh M, Katoozian H, Amid R, Kadkhodazadeh M. Finite element analysis of dental implants with and without microthreads under static and dynamic loading. J Long Term Eff Med Implants 2017;27:25-35.   DOI
94 Yamaguchi S, Yamanishi Y, Machado LS, Matsumoto S, Tovar N, Coelho PG, Thompson VP, Imazato S. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models. J Prosthodont Res 2018;62:24-30.   DOI
95 Duan Y, Gonzalez JA, Kulkarni PA, Nagy WW, Griggs JA. Fatigue lifetime prediction of a reduced-diameter dental implant system: numerical and experimental study. Dent Mater 2018;34:1299-309.   DOI
96 Lee H, Park S, Noh G. Biomechanical analysis of 4 types of short dental implants in a resorbed mandible. J Prosthet Dent 2019;121:659-70.   DOI
97 Cervino G, Romeo U, Lauritano F, Bramanti E, Fiorillo L, D'Amico C, Milone D, Laino L, Campolongo F, Rapisarda S, Cicciu M. FEM and von Mises analysis of OSSTEM® dental implant structural components: evaluation of different direction dynamic loads. Open Dent J 2018;12:219-29.   DOI
98 Geramizadeh M, Katoozian H, Amid R, Kadkhodazadeh M. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis. J Korean Assoc Oral Maxillofac Surg 2018;44:59-65.   DOI