• 제목/요약/키워드: implant structure

검색결과 255건 처리시간 0.021초

The oral microbiome of implant-abutment screw holes compared with the peri-implant sulcus and natural supragingival plaque in healthy individuals

  • MinKee Son;Yuri Song;Yeuni Yu;Si Yeong Kim;Jung-Bo Huh;Eun-Bin Bae;Won-Tak Cho;Hee Sam Na;Jin Chung
    • Journal of Periodontal and Implant Science
    • /
    • 제53권3호
    • /
    • pp.233-244
    • /
    • 2023
  • Purpose: An implant-supported prosthesis consists of an implant fixture, an abutment, an internal screw that connects the abutment to the implant fixture, and the upper prosthesis. Numerous studies have investigated the microorganisms present on the implant surface, surrounding tissues, and the subgingival microflora associated with peri-implantitis. However, there is limited information regarding the microbiome within the internal screw space. In this study, microbial samples were collected from the supragingival surfaces of natural teeth, the peri-implant sulcus, and the implant-abutment screw hole, in order to characterize the microbiome of the internal screw space in healthy subjects. Methods: Samples were obtained from the supragingival region of natural teeth, the peri-implant sulcus, and the implant screw hole in 20 healthy subjects. DNA was extracted, and the V3-V4 region of the 16S ribosomal RNA was sequenced for microbiome analysis. Alpha diversity, beta diversity, linear discriminant analysis effect size (LEfSe), and network analysis were employed to compare the characteristics of the microbiomes. Results: We observed significant differences in beta diversity among the samples. Upon analyzing the significant taxa using LEfSe, the microbial composition of the implant-abutment screw hole's microbiome was found to be similar to that of the other sampling sites' microbiomes. Moreover, the microbiome network analysis revealed a unique network complexity in samples obtained from the implant screw hole compared to those from the other sampling sites. Conclusions: The bacterial composition of the biofilm collected from the implant-abutment screw hole exhibited significant differences compared to the supra-structure of the implant. Therefore, long-term monitoring and management of not only the peri-implant tissue but also the implant screw are necessary.

Considerations and clinical appliances of various abutments in implant prostheses (임플란트 보철 치료에서 지대주 선택시 고려사항과 임상적 적용)

  • Park, Sungwoo;Kim, Sunjai;Chang, Jae-Seung
    • The Journal of the Korean dental association
    • /
    • 제54권3호
    • /
    • pp.191-197
    • /
    • 2016
  • In the past, restoration of implant crown, ready-made abutment produced by implant manufacturer could only be used. Using straight, angled abutment, there was a limit in adaptation multiple implants. Recently, with the development of implant and CAD/CAM technology, CAD/CAM customized abutment use has become possible which is different from the past when restoration was possible with only prefabricated abutment. Not only it makes emergence profile possible which is similar to natural teeth, but also it makes insertion path possible on CAD in multiple implant restorations. However, on anterior teeth which dental esthetics is very important, another restorations which are formed with natural colored gingiva area could be required. Titanium-based zirconia prostheses which have titanium connection and zirconia structure from 1mm above fixture platform are alternative. Therefore, the purpose of this review is to analyze the characteristics, advantages and disadvantages of the abutment which is used in multiple implant restorations, and to choose right abutment when clinical trials.

  • PDF

Comparative Study Of Osseointergration On Different Immediate Implants In Extraction Sockets Of Beagle Dogs (성견에 발치 후 즉시 임플란트 식립시 RBM 처리된 임플란트의 골융합에 관한 연구)

  • Sun, Ki-Jong;Park, Jae-Young;Jung, Eun-Gyeong;Shin, Mee-Ran;Kim, Yun-Sang;Pi, Sung-Hee;Shin, Hyung-shik;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • 제37권2호
    • /
    • pp.209-221
    • /
    • 2007
  • Recently, immediately after losing teeth. implant placement has been greatly attempted. Implant can help restoration of tooth functions within short time. This study was an attempt to examine the extent of osseointergation when the implants will be placed immediately after teeth extraction using domestic implant systems. Implants were inserted in beagle dogs and evaluated the clinical, radiological, histological and histomorphometric assay at 6 weeks and 12 weeks. For experimental materals, $STAGE-1^{(R)}$($4.1{\times}8mm$, Lifecore, USA), $SS-III^{(R)}$($4.0{\times}8mm$, OSSTEM, Korea) and $IFI^{(R)}$($4.0{\times}8mm$, Dio, Korea) implants treated with RBM were placed. All the placed site showed normal results without fail and inflammation clinically and radiologically. As a result of measurement by periotest, it showed $-2\;{\sim}\;-5$ and stable status comprehensively. There was no statistically significant difference among implants(p<0.05). Bone tissue adjacent to implant showed increased marrow tissue at 6 weeks. Nevertheless, osteogenic structure was not observed remarkably. In a 12 weeks opinion, bone tissue composed of osseointegration along implant interface showed significantly decreased marrow tissue containing central vessels unlike a 6 weeks opinion and matured compact bone whose osteogenic structure is well formed. BIC were 42.4%, 32.0% and 34.9%, respectively in 6 weeks and there was no statistically significant difference among group(p<0.05). In 12 weeks, BIC were 58.8%, 61.9% and 57.5%. respectively and there was no statistically significant difference among groups(p<0.05). It is considered that all 3 implant systems are suitable for immediate implant placement.

THE EFFECT OF A CHITOSAN COATING OF DENTAL IMPLANT ON THE SHOCK ABSORPTION UNDER IMPACT TEST (키토산으로 표면처리된 인공치아의 충격전달에 관한 연구)

  • Kim, Ki-Hong;Lee, Yong-Chan;Cho, Byoung-Ouck;Choi, Kui-Won;Kwon, Ick-Chan;Bae, Tae-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권1호
    • /
    • pp.9-14
    • /
    • 2001
  • With the object of providing a temporary artificial periodonal ligament-like membrane around the dental implant, 10 Branemark type implants were coated with commercially available chitosan(Fluka Co., Buchs, Switzerland) which has a molecular weight of 70,000 and 80% deacetylation degree. Once this bioactive hydrophillic polymer(chitosan) contacts with blood or wound fluids, it becomes swollen and penetrates into the adjacent cancellous bone. Thus the interface between implant and surrounding bone is completely filled with chitosan. This tight junction in early healing phase enhances primary stability. The chitosan coated dental implants were implanted into the fresh patella bones from porcine knees, since the thickness of cortical bone is relatively even and their cancellous structure is homogenous. To test the shock absorbing effect, 1mm delta-rogette strain gage was installed behind the implant. The results showed 1. The principal strain peak value directed to the impact of coated implant was 0.064 0.018(p<0.05) and that of uncoated implant was 0.095(0.032 p<0.05). 2. The peak time delay of coated implant was 0.056sec(0.011 p<0.05) and that of uncoated implant was 0.024sec(0.009 p<0.05). It can be reasoned from this results that the chitosan coating has a shock absorbing effect comparable with a temporary artificial periodontal ligament.

  • PDF

Positioning errors of dental implants and their associations with adjacent structures and anatomical variations: A CBCT-based study

  • Ribas, Beatriz Ribeiro;Nascimento, Eduarda Helena Leandro;Freitas, Deborah Queiroz;Pontual, Andrea dos Anjos;Pontual, Maria Luiza dos Anjos;Perez, Danyel Elias Cruz;Ramos-Perez, Flavia Maria Moraes
    • Imaging Science in Dentistry
    • /
    • 제50권4호
    • /
    • pp.281-290
    • /
    • 2020
  • Purpose: The objective of the present study was to evaluate the prevalence of dental implants positioning errors and their associations with adjacent structures and anatomical variations by means of cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 207 patients (584 dental implants) were evaluated by 2 oral radiologists. The distance between the implant and the adjacent teeth/implants was measured and classified as adequate (≥1.5 mm and ≥3 mm, respectively) or inadequate. The presence of thread exposure, cortical perforation, implant dehiscence, implant penetration into adjacent structures, and anatomical variations was also recorded. The incisor canal diameter and the depth of the concavity of the submandibular fossa were measured in order to evaluate their correlations with the frequency of implant penetration in these structures. Descriptive analyses, the Fisher exact test, and Spearman correlation analysis were performed (α=0.05). Results: The overall prevalence of positioning errors was 82.9%. The most common error was the inadequate distance between the implant and the adjacent teeth/implants. The presence of anatomical variations did not significantly influence the overall prevalence of errors (P>0.05). There was a positive correlation between the diameter of the incisor canal and the frequency of implant penetration in this structure (r=0.232, P<0.05). Conclusion: There was a high prevalence of dental implant positioning errors, and positioning errors were not associated with the presence of anatomical variations. Professionals should be aware of the space available for implant placement during the preoperative planning stage.

Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects (삼차원적으로 연결된 미세다공성 구조를 가진 이상인산칼슘 골이식재의 골치유에 관한 조직계측학적 평가)

  • Lee, Jong-Sik;Choi, Seok-Kyu;Ryoo, Gyeong-Ho;Park, Kwang-Bum;Jang, Je-Hee;Lee, Jae-Mok;Suh, Jo-Young;Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • 제38권2호
    • /
    • pp.117-124
    • /
    • 2008
  • Purpose: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. Material and Methods: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of $4400\;{\mu}m$ in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. Result: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. Conclusion: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.

Characteristics of Abutment Screw Structure for Dental Implant (치과용 임플란트 지대주 나사 구조에 관한 연구)

  • Song, Jong-Beop;Choi, Il-kyung;Jung, Hyo-kyung;Kwon, Soon-Hong;Kwon, Soon-Gu;Park, Jong-Min;Kim, Jong-Soon;Jung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제20권2호
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

PHOTOELASTIC STRESS ANALYSIS ON THE MANDIBLE CAUSED BY IMPLANT OVERDENTURE (임플랜트 Overdenture의 Bar설계에 따른 하악지지조직의 광탄성학적 응력분석)

  • Kang Jeong-Min;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제32권2호
    • /
    • pp.327-353
    • /
    • 1994
  • This study was performed to evaluate the effects of number and alignment of implant fixture and various bar designs on the retention of denture and the stress distribution. Six kinds of photoelastic mandibular models and nine kinds of overdenture specimens were designed. A unilateral vertical load was gradually applied on the right first molar to calculate the maximal dislodgement load of each specimen. A unilateral vertical load of 17 Kgf was applied on the right first molar and a vertical load of 10 Kgf was applied on the interincisal edge region. The stress pattern which developed in each photoelastic model was analyzed by the reflection polariscope. The results obtained were as follows: 1. The maximal dislodgement load reversely increased with the distance from the loading point to the implant fixture, while it linearly increased with that from the most posterior implant fixture to the mesial clip. The maximal dislodgement load also increased with the use of a cantilever bar. 2. Under the posterior vertical load, the stress to the supporting tissue of the denture base increased with the distance from the loading point to the implant future. The stress concentration on the apical area of the implant future reversely increased with the distance from the loading point to the implant future. 3. In the overdentures supported by two implant fixtures under the posterior vertical load. the specimen implanted on lateral incisor areas with a cantilever bar exhibited more favorable stress distribution than that without a cantilever bar. The specimen implanted on the canine areas without a cantilever bar, however, exhibited more favorable stress distribution. 4. In the overdentures supported by three implant fixtures. the specimen implanted ell the midline and canine areas exhibited more favorable stress distribution than that implanted oil the midline and the first premolar areas. 5. In the overdentures supported by four implant fixtures. the specimen implanted with two adjacent implant fixtures exhibited more favorable stress distribution than that implanted at equal distance under the posterior vertical load. 6. Under the anterior vertical load, the overdentures supported by three implant fixtures exhibited stress concentration on the supporting structure of the middle implant future. In overdentures supported by two or four implant futures, no significant difference was noted in stress distribution between the types of bars. These results indicate that the greater the number of implant fixtures, the better the stress distribution is. A favorable stress distribution may be obtained in the overdentures supported by two or three implant fixtures, if the location and the design of the bar are appropriate.

  • PDF

Effect of Variable Scanning Protocols on the Pre-implant Site Evaluation of the Mandible in Reformatted Computed Tomography (영상재구성 전산화 단층촬영에서 촬영조건의 변화가 하악골 술전 임플란트 부위 평가에 미치는 영향)

  • Kim Kee-Deog;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • 제29권1호
    • /
    • pp.21-32
    • /
    • 1999
  • Purpose: To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. Materials and Methods: A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5. 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. Results: On image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal and in horizontal measurement. there was no statistically significant difference among conventional and helical scans with pitches of 1.0. 1.5 and 2.0. In vertical measurement. there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. Conclusion: The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of predental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  • PDF