Browse > Article

Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects  

Lee, Jong-Sik (Department of Periodontology, School of Dentistry, Kyungpook National University)
Choi, Seok-Kyu (Megagen Implant Co., Ltd)
Ryoo, Gyeong-Ho (Megagen Implant Co., Ltd)
Park, Kwang-Bum (Megagen Implant Co., Ltd)
Jang, Je-Hee (Department of Periodontology, Graduate School of Dentistry, Kyungpook National University)
Lee, Jae-Mok (Department of Periodontology, School of Dentistry, Kyungpook National University)
Suh, Jo-Young (Department of Periodontology, School of Dentistry, Kyungpook National University)
Park, Jin-Woo (Department of Periodontology, School of Dentistry, Kyungpook National University)
Publication Information
Journal of Periodontal and Implant Science / v.38, no.2, 2008 , pp. 117-124 More about this Journal
Abstract
Purpose: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. Material and Methods: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of $4400\;{\mu}m$ in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. Result: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. Conclusion: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.
Keywords
biphasic calcium phosphate; microporous structure; histomorphometry; osteoconductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal osseous defects. J Periodontol. 1988;59:394-397   DOI   PUBMED
2 Schwartz Z, Somers A, Mellonig JT et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol. 1998;69:470-478   DOI   PUBMED   ScienceOn
3 Han T, Carranza FA Jr, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984;32:88-108   PUBMED
4 Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol. 1983;54:455-462   DOI   PUBMED
5 Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259-278   PUBMED
6 LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201-209   DOI   ScienceOn
7 Schwartz C, Liss P, Jacquemaire B, Lecestre P, Frayssinet P. Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. J Mater Sci Mater Med. 1999;10:821-825   DOI   ScienceOn
8 Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989;23:883-894   DOI   ScienceOn
9 Daculsi G, LeGeros RZ, Mitre D. Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int. 1989;45:95-103   DOI
10 Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46:20-27   DOI
11 Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133-139   DOI   ScienceOn
12 Eggli PS, Mller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127-138
13 Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-180   PUBMED
14 Karageorgiou V, Kaplan D. et al. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474-5491   DOI   ScienceOn
15 Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299-308   PUBMED
16 Le Guehennec L, Goyenvalle E, Aguado E et al. Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res B Appl Biomater. 2005;72:69-78   PUBMED
17 Lecomte A, Gautier H, Bouler JM et al. Biphasic calcium phosphate: A comparative study of interconnected porosity in two ceramics. J Mater Sci Mater Med. 2008;84:1-6
18 Froum SJ, Kushner L, Scopp IW, Stahl SS. Human clinical and histologic responses to Durapatite implants in intraosseous lesions. Case reports. J Periodontol. 1982;53:719-725   DOI   PUBMED
19 Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999;70:1053-1063   DOI
20 Chang BS, Lee CK, Hong KS et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000;21:1291-1298   DOI   ScienceOn
21 Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63:729-735   DOI   PUBMED
22 Berube P, Yang Y, Carnes DL et al. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005;76:1697-1709   DOI   ScienceOn
23 Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofac Surg. 1992;20:257-260   DOI   PUBMED
24 Klinge B, Alberius P , Issakson J , Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofacial Surg. 1992;50:241-249   DOI   ScienceOn
25 Levin MP, Getter L, Adrian J, Cutright DE. Healing of periodontal defects with ceramic implants. J Clin Periodontol. 1974;1:197-205   DOI
26 Lu JX, Flautre B, Anselme K et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111-120   DOI   ScienceOn
27 Hiatt WH, Schallhorn RG. Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol. 1973;44:194-208   DOI   PUBMED
28 Sirola K. Regeneration of defects in the calvaria. An experimental study. Ann Med Exp Biol Fenn. 1960;38:1-87   PUBMED
29 Sartori S, Silvestri M, Forni F et al. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14:369-372   DOI   ScienceOn
30 Schallhorn RG. Present status of osseous grafting procedures J Periodontol. 1977;48:570-576   DOI   PUBMED
31 Park JW, Park KB, Jang IS et al. Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute. J Korean Acad Periodontol. 2006;36:797-808   과학기술학회마을   DOI
32 Ellegaard B, Karring T, Davies R, Le H. New attachment after treatment of intrabony defects in monkeys. J Periodontol. 1974;45:368-377   DOI   PUBMED
33 Yukna RA, Harrison BG, Caudill RF et al. Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. II. Twelve month reentry results. J Periodontol. 1985;56:540-547   DOI   PUBMED
34 Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6:22-33   PUBMED
35 Buser D, Hoffmann B, Bernard JP et al. Evaluation of filling materials in membrane- protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res. 1998;9:137-150   DOI   ScienceOn
36 Lee YM, Shin SY, Kim JY et al. Bone reaction to bovine hydroxyapatite for maxillary sinus floor augmentation: histologic results in humans. Int J Periodontics Restorative Dent. 2006;26:471-481   PUBMED
37 Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P. Porous HA ceramic for bone replacement: role of the pores and interconnections - experimental study in the rabbit. J Mater Sci Mater Med. 2001;12:679-682   DOI   ScienceOn
38 Schwartz Z, Mellonig JT, Carnes DL Jr et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1996;67:918-926   DOI   PUBMED   ScienceOn
39 Rohanizadeh R, Padrines M, Bouler JM et al. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J Biomed Mater Res. 1998;42:530-539   DOI   ScienceOn
40 Kramer IR, Kelly HC, Wright HC. A histological and radiological comparison of the healing of defects of the rabbit calvarium with and without implanted heterogeneous anorganic bone. Arch Oral Biol 1968;13:1095-1106   DOI   ScienceOn