Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects

삼차원적으로 연결된 미세다공성 구조를 가진 이상인산칼슘 골이식재의 골치유에 관한 조직계측학적 평가

  • Lee, Jong-Sik (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Choi, Seok-Kyu (Megagen Implant Co., Ltd) ;
  • Ryoo, Gyeong-Ho (Megagen Implant Co., Ltd) ;
  • Park, Kwang-Bum (Megagen Implant Co., Ltd) ;
  • Jang, Je-Hee (Department of Periodontology, Graduate School of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Park, Jin-Woo (Department of Periodontology, School of Dentistry, Kyungpook National University)
  • 이종식 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 최석규 ((주)메가젠 임플란트) ;
  • 류경호 ((주)메가젠 임플란트) ;
  • 박광범 ((주)메가젠 임플란트) ;
  • 장제희 (경북대학교 대학원 치의학과 치주과학교실) ;
  • 이재목 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 서조영 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 박진우 (경북대학교 치의학전문대학원 치주과학교실)
  • Published : 2008.06.30

Abstract

Purpose: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. Material and Methods: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of $4400\;{\mu}m$ in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. Result: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. Conclusion: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.

Keywords

References

  1. Hiatt WH, Schallhorn RG. Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol. 1973;44:194-208 https://doi.org/10.1902/jop.1973.44.4.194
  2. Schallhorn RG. Present status of osseous grafting procedures J Periodontol. 1977;48:570-576 https://doi.org/10.1902/jop.1977.48.9.570
  3. Ellegaard B, Karring T, Davies R, Le H. New attachment after treatment of intrabony defects in monkeys. J Periodontol. 1974;45:368-377 https://doi.org/10.1902/jop.1974.45.5.2.368
  4. Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze-dried cortical bone allograft in human periodontal osseous defects. J Periodontol. 1988;59:394-397 https://doi.org/10.1902/jop.1988.59.6.394
  5. Schwartz Z, Mellonig JT, Carnes DL Jr et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1996;67:918-926 https://doi.org/10.1902/jop.1996.67.9.918
  6. Schwartz Z, Somers A, Mellonig JT et al. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on donor age but not gender. J Periodontol. 1998;69:470-478 https://doi.org/10.1902/jop.1998.69.4.470
  7. Sogal A, Tofe AJ. Risk assessment of bovine spongiform encephalopathy transmission through bone graft material derived from bovine bone used for dental applications. J Periodontol. 1999;70:1053-1063 https://doi.org/10.1902/jop.1999.70.9.1053
  8. Han T, Carranza FA Jr, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984;32:88-108
  9. Froum SJ, Kushner L, Scopp IW, Stahl SS. Human clinical and histologic responses to Durapatite implants in intraosseous lesions. Case reports. J Periodontol. 1982;53:719-725 https://doi.org/10.1902/jop.1982.53.12.719
  10. Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol. 1983;54:455-462 https://doi.org/10.1902/jop.1983.54.8.455
  11. Levin MP, Getter L, Adrian J, Cutright DE. Healing of periodontal defects with ceramic implants. J Clin Periodontol. 1974;1:197-205 https://doi.org/10.1111/j.1600-051X.1974.tb01258.x
  12. Yukna RA, Harrison BG, Caudill RF et al. Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. II. Twelve month reentry results. J Periodontol. 1985;56:540-547 https://doi.org/10.1902/jop.1985.56.9.540
  13. Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6:22-33
  14. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259-278
  15. Buser D, Hoffmann B, Bernard JP et al. Evaluation of filling materials in membrane- protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res. 1998;9:137-150 https://doi.org/10.1034/j.1600-0501.1998.090301.x
  16. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63:729-735 https://doi.org/10.1902/jop.1992.63.9.729
  17. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201-209 https://doi.org/10.1023/A:1022872421333
  18. Schwartz C, Liss P, Jacquemaire B, Lecestre P, Frayssinet P. Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. J Mater Sci Mater Med. 1999;10:821-825 https://doi.org/10.1023/A:1008944227417
  19. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res. 1989;23:883-894 https://doi.org/10.1002/jbm.820230806
  20. Daculsi G, LeGeros RZ, Mitre D. Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int. 1989;45:95-103 https://doi.org/10.1007/BF02561408
  21. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46:20-27 https://doi.org/10.1007/BF02555820
  22. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133-139 https://doi.org/10.1016/S0142-9612(97)00180-4
  23. Berube P, Yang Y, Carnes DL et al. The effect of sputtered calcium phosphate coatings of different crystallinity on osteoblast differentiation. J Periodontol. 2005;76:1697-1709 https://doi.org/10.1902/jop.2005.76.10.1697
  24. Rohanizadeh R, Padrines M, Bouler JM et al. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins. J Biomed Mater Res. 1998;42:530-539 https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<530::AID-JBM8>3.0.CO;2-6
  25. Eggli PS, Mller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127-138
  26. Lu JX, Flautre B, Anselme K et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111-120 https://doi.org/10.1023/A:1008973120918
  27. Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P. Porous HA ceramic for bone replacement: role of the pores and interconnections - experimental study in the rabbit. J Mater Sci Mater Med. 2001;12:679-682 https://doi.org/10.1023/A:1011256107282
  28. Chang BS, Lee CK, Hong KS et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000;21:1291-1298 https://doi.org/10.1016/S0142-9612(00)00030-2
  29. Park JW, Park KB, Jang IS et al. Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute. J Korean Acad Periodontol. 2006;36:797-808 https://doi.org/10.5051/jkape.2006.36.4.797
  30. Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-180
  31. Sirola K. Regeneration of defects in the calvaria. An experimental study. Ann Med Exp Biol Fenn. 1960;38:1-87
  32. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299-308
  33. Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofac Surg. 1992;20:257-260 https://doi.org/10.1016/S1010-5182(05)80438-X
  34. Kramer IR, Kelly HC, Wright HC. A histological and radiological comparison of the healing of defects of the rabbit calvarium with and without implanted heterogeneous anorganic bone. Arch Oral Biol 1968;13:1095-1106 https://doi.org/10.1016/0003-9969(68)90063-0
  35. Le Guehennec L, Goyenvalle E, Aguado E et al. Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res B Appl Biomater. 2005;72:69-78
  36. Lecomte A, Gautier H, Bouler JM et al. Biphasic calcium phosphate: A comparative study of interconnected porosity in two ceramics. J Mater Sci Mater Med. 2008;84:1-6
  37. Karageorgiou V, Kaplan D. et al. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474-5491 https://doi.org/10.1016/j.biomaterials.2005.02.002
  38. Klinge B, Alberius P , Issakson J , Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofacial Surg. 1992;50:241-249 https://doi.org/10.1016/0278-2391(92)90320-Y
  39. Sartori S, Silvestri M, Forni F et al. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res. 2003;14:369-372 https://doi.org/10.1034/j.1600-0501.2003.140316.x
  40. Lee YM, Shin SY, Kim JY et al. Bone reaction to bovine hydroxyapatite for maxillary sinus floor augmentation: histologic results in humans. Int J Periodontics Restorative Dent. 2006;26:471-481