• Title/Summary/Keyword: implant stability

Search Result 488, Processing Time 0.025 seconds

COMPARISON OF RESONANCE FREQUENCY ANALYSIS BETWEEN VARIOUS SURFACE PROPERTIES (임프란트 표면 처리에 따른 공명주파수 변화에 대한 연구)

  • Bae, Sang-Bum;Lee, Seong-Hyun;Song, Seung-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • Purpose: The aim of this study is to compare the stability between Mg-incorporated implant, TiUnite and Machined implant. Materials and Methods: Premolars of 3 Mini pigs (24 months) were extracted. After 2 months later, total 27 fixtures of implants (9 of each design : Machined/ TiUnite/ Mg-incorporated) were inserted into the mandible of 3 mini-pig. Implant stability was estimated by RFA in installation to 2, 4 & 6 weeks. Statistical analysis of RFA values was performed with time and between groups using repeated measure ANOVA and turkey's multiple comparison test. Results: In analyzing the mean value for the observation periods, three types of implants yielded a slight decrease in RFA mean value after 2 week, followed by increase at 4-6 weeks. Mg incorporated oxidized implants demonstrated significantly higher RFA mean values at 6 weeks comparing other groups. The difference of RFA value with time and between groups was statistically significant. Conclusion: We concluded that Mg implants may reduce failure rates of clinical implants In the early period of bone healing and Mg implants may shorten the bone healing time from surgery to functional loading.

ASSESSMENT OF IMPLANT STABILITY AFTER IMMEDIATE LOADING IN DOGS : CLINICAL AND RADIOGRAPHIC STUDY (성견에서 즉시 부하 후 임프란트 안정성 평가 : 임상적, 방사선학적 연구)

  • Lee, Joo-Young;Kim, Su-Gwan;Kim, Sang-Ho;Kim, Wan-Bae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.131-139
    • /
    • 2005
  • The therapeutic goal of implant dentistry is not merely tooth replacement but total oral rehabilitation. Considering dental implants as a treatment option can be provided patients with positive, long-term results. Implant dentistry has gone through many phases over the years. Modern technology and design allows us to predictably place our dental implants often load the implants at the time of placement. The purpose of this study is to evaluate the implant stability after immediate loading in dogs. The control group was performed delay loading and experimental group was immediate loading. Each group was measured periotest value(PTV) to evaluate clinical mobility and performed radiographic examination to evaluate marginal bone loss. Statistically significant difference was not founded in control group between experimental group in PTV(P>0.05) and marginal bone loss(P>0.05). Finally, implant stability after immediate loading was similar to delay loading implant.

The Effect of a Shock-Absorbable Polymer(Chitosan) on the Initial Stability and Dynamic Behavior of Dental Implant (충격흡수용 고분자재료의 이용이 Implant 초기안정성과 동적거동에 미치는 영향)

  • Joo, W.;Choi, K.;Kwon, I.C.;Choi, J.B.;Moon, H.J.;Shin, J.W.;Lee, Y.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.337-342
    • /
    • 1997
  • Dental implant has been increasingly used to recover the masticatory unction of tooth. It has been well known that the success of dental implant is heavily dependent on initial stability and long-term osseointegration due to optimal stress distribution in the surrounding bones. The role of periodontal ligament, removed during operation, is to absorb impact force and to distribute them to alveolar bone. or this reason, the study for artificial periodontal ligament has become an important issue in this field. In this study, chitosan was coated on dental implant or the purpose of replacing the role of intact periodontal ligament. The results by experiment and FEM analysis showed : I) Initial stability of dental implant was significantly increased(35%) when the implant was coated with chitosan. II) The coated implant showed higher impact absorption, more even stress distribution and lower stress magnitude under impact force than uncoated implant. Accordingly, the micro-fracture of the surrounding bones due to impact force would be lessened by chitosan coating on dental implant.

  • PDF

Retrospective clinical study of ultrawide implants more than 6 mm in diameter

  • Ku, Jeong-Kui;Yi, Yang-Jin;Yun, Pil-Young;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.30.1-30.6
    • /
    • 2016
  • Background: The prognosis of wide implants tends to be controversial. While wider implants were initially expected to result in a larger osseointegration area and have higher levels of primary stability, they were reported to have a relatively high rate of failure. The clinical outcome of ultrawide implants of more than 6 mm in diameter was evaluated through a retrospective study. Methods: The investigation was conducted on patients who had received ultrawide implant (${\geq}6mm$ diameter) placements in Seoul National University Bundang Hospital from January 2008 to December 2013. Complications were investigated during the maintenance period, and marginal bone loss was measured using periapical radiography. Primary stability immediately after the implant placement and second stability after second surgery or during impression were measured using $Osstell^{(R)}$ Mentor (Osstell, Sweden) as an implant stability quotient (ISQ). Results: Fifty-eight implants were placed in 53 patients (30 male, 23 female), and they were observed for an average of $50.06{\pm}23.49$ months. The average ISQ value increased from $71.22{\pm}10.26$ to $77.48{\pm}8.98$ (P < 0.005). The primary and secondary stability shows significantly higher at the mandible than at the maxilla (P < 0.001). However, mean survival rate shows 98.28 %. Average marginal bone loss of 0.018 and 0.045 mm were measured at 12 and 24 months after the loading and 0.14 mm at final follow-up date (mean 46.25 months), respectively. Also in this study, the bone loss amount was noticeably small compared to regular implants reported in previous studies. Conclusions: The excellent clinical outcome of ultrawide implants was confirmed. It was determined that an ultrawide implant can be used as an alternative when the bone quality in the posterior teeth is relatively low or when a previous implant has failed.

THE EFFECT OF SURFACE TREATMENT OF THE CERVICAL AREA OF IMPLANT ON BONE REGENERATION IN MINI-PIG (미니돼지에서 발치 후 즉시 임플란트 매식시 치경부 표면처리가 골재생에 미치는 효과)

  • Cho, Jin-Yong;Kim, Young-Jun;Yu, Min-Gi;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2008
  • Purpose: The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation. Materials and methods: The four minipigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ${\phi}$3.3 mm and 11.5 mm long US II plus implants (Osstem Implant co., Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant co., Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured with $Osstell^{TM}$ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the procedures and measurement of implant stability were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained. Results: Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was $2.66{\pm}0.11$ mm at US II implants group and $1.80{\pm}0.13$mm at US II plus implant group. The P-B distance after 4 months of healing was $2.29{\pm}0.13$mm at US II implants group and $1.25{\pm}0.10$mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant(p<0.05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group. Conclusion: The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.

A STUDY ON THE STABILITY OF IMPLANT SCREW BY USE OF THE SEALER (Sealer의 사용이 임프란트 나사의 안정성에 미치는 영향)

  • Lee Heung-Tae;Kim Nak-Hyung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.4
    • /
    • pp.366-375
    • /
    • 2001
  • The objective of this study was to investigate the surface contact and screw joint stability between screw and implant interface by use of sealer. The implants evaluated in this study were Steri-Oss futures(Hexlock $3.8D{\times}10mm$: Steri-Oss, Yorba Linda, CA), and Steri-Oss staight abutment. Titanium alloy screws were used to secure abutments to implants. The other titanium alloy screws applicating sealer(Impla-Seal, Implant Support Systems, Inc. Irvine, CA) were used to secure abutments to implants. In one another sample, 6kg of force was applied during simulated intraoral movements after abutment screws were secured to the implants with sealer. All samples were cross sectioned with sandpaper and polished with $0.1{\mu}m\;Al_2O_3$. Then samples were recorded with an scanning electron microscope. The results were as follows : 1. In the case of titanium alloy screw, irregular contacts and relatively large gap were present at thread mating surface. Also abutment screw/implant interface demonstrate incomplete seating and only one surface contact of threads between implant and screw. 2. In the case of titanium alloy screw applecating sealer, sealer was present between implant and screw. Therefore implant and screw had relatively close and tight contact without the presence of large gap. 3. On the other hand, in the case of titanium alloy screw applicating sealer and dynamic loading of suprastructures, sealer was partially present between implant and screw. Conclusively, sealer fills voids, creating a barrier to moisture and bacteria. In addition, loading of suprastructures may change the situation and limit the indications for gap sealing.

  • PDF

The influence of implant diameter, length and design changes on implant stability quotient (ISQ) value in artificial bone (임플란트의 직경, 길이 및 디자인변화가 임플란트 안정성지수(ISQ)에 미치는 영향)

  • Lee, Jeong-Yol;Lee, Won-Chang;Kim, Min-Soo;Kim, Jong-Eun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.292-298
    • /
    • 2012
  • Purpose: The purpose of this study is to ascertain the stability of the implant by comparing the effects of the change of implant diameter, length and design on implant stability quotient. Materials and methods: To remove the variable due to the difference of bone quality, the uniform density (0.48 g/$cm^3$) Polyuretane foam blocks (Sawbones$^{(R)}$, Pacific Research Laboratories Inc, Vashon, Washington) were used. Implants (Implantium$^{(R)}$, Dentium, Seoul, Korea) were placed with varying diameters (${\phi}3.8$, ${\phi}4.3$ and ${\phi}4.8$) and length (8 mm, 10 mm and 12 mm), to assess the effect on implant stability index (ISQ). Also the influence of the design of the submerged and the non-submerged (SimplelineII$^{(R)}$, Dentium, Seoul, Korea) on ISQ was evaluated. To exclude the influence of insertion torque, a total of 60 implants (n = 10) were placed with same torque to 35 N. Using Osstell$^{TM}$ mentor (Integration Diagnostic AB, Sweden) ISQ values were recorded after measuring the resonant frequency, one-way ANOVA and Tukey HSD test results were analyzed. (${\alpha}$=0.05). Results: 1. The change of the diameter of the implant did not affect the ISQ (P>.05), but the increase of implant length increased the ISQ(P<.001). 2. The change in implant design were correlated with the ISQ, and the ISQ of submerged design was significantly higher than that of the non-submerged design(P<.05). Conclusion: In order to increase implant stability, the longer implant is better to be selected, and on the same length of implant, submerged design is thought to be able to get a higher ISQ than the non-submerged.

Bone cement grafting increases implant primary stability in circumferential cortical bone defects

  • Shin, Seung-Yun;Shin, Seung-Il;Kye, Seung-Beom;Chang, Seok-Woo;Hong, Jongrak;Paeng, Jun-Young;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • Purpose: Implant beds with an insufficient amount of cortical bone or a loss of cortical bone can result in the initial instability of a dental implant. Thus, the objective of this study was to evaluate the effect of bone cement grafting on implant initial stability in areas with insufficient cortical bone. Methods: Two different circumferential defect depths (2.5 mm and 5 mm) and a control (no defect) were prepared in six bovine rib bones. Fourteen implants of the same type and size ($4mm{\pm}10mm$) were placed in each group. The thickness of the cortical bone was measured for each defect. After the implant stability quotient (ISQ) values were measured three times in four different directions, bone cement was grafted to increase the primary stability of the otherwise unstable implant. After grafting, the ISQ values were measured again. Results: As defect depth increased, the ISQ value decreased. In the controls, the ISQ value was $85.45{\pm}3.36$ ($mean{\pm}standard$ deviation). In circumferential 2.5-mm and 5-mm defect groups, the ISQ values were $69.42{\pm}7.06$ and $57.43{\pm}6.87$, respectively, before grafting. These three values were significantly different (P<0.001). After grafting the bone cement, the ISQ values significantly increased to $73.72{\pm}8.00$ and $67.88{\pm}10.09$ in the 2.5-mm and 5.0-mm defect groups, respectively (P<0.05 and P<0.001). The ISQ value increased to more than double that before grafting in the circumferential 5-mm defect group. The ISQ values did not significantly differ when measured in any of the four directions. Conclusions: The use of bone cement remarkably increased the stability of the implant that otherwise had an insufficient level of stability at placement, which was caused by insufficient cortical bone volume.

The influence of thread geometry on implant osseointegration under immediate loading: a literature review

  • Ryu, Hyo-Sook;Namgung, Cheol;Lee, Jong-Ho;Lim, Young-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.547-554
    • /
    • 2014
  • Implant success is achieved by the synergistic combination of numerous biomechanical factors. This report examines the mechanical aspect of implants. In particular, it is focused on macrodesign such as thread shape, pitch, width and depth, and crestal module of implants. This study reviews the literature regarding the effect of implant thread geometry on primary stability and osseointegration under immediate loading. The search strategy included both in vitro and in vivo studies published in the MEDLINE database from January 2000 to June 2014. Various geometrical parameters are analyzed to evaluate their significance for optimal stress distribution, implant surface area, and bone remodeling responses during the process of osseointegration.

A Numerical Study for the Variation of Cortical Bone Thickness with Several Dental Implants (인공치아에 있어 피질골의 두께 변화가 미치는 영향에 관한 연구)

  • Choi, J.B.;Moon, H.J.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.323-326
    • /
    • 1996
  • Dental implant is increasingly used to recover the mastication function of tooth. Several types of implant were designed to give an optimal stress distribution in surrounding bony regions. In this study, six types of implant were investigated using finite element method and it was studied i) how the variation of cortical bone thickness affects the stress distribution in surrounding bony regions depending upon implant types, ii) which type gives the best characteristics in the sence of stress distribution and stability. The hybrid-type implant with cylinder and screw gave the optimum properties in view of stability and response to the variation of cortical bone thickness.

  • PDF