• Title/Summary/Keyword: impervious ratio

Search Result 60, Processing Time 0.023 seconds

Measurement of Effective and Total Impervious Ratio and Its Usage for Watershed Management (유효 및 총불투수율의 산정과 유역관리에서의 활용방안)

  • Choi, Ji-Yong;Koh, Eun-Ju
    • Journal of Environmental Policy
    • /
    • v.7 no.3
    • /
    • pp.121-140
    • /
    • 2008
  • The impervious cover ratio has been used as an important measure for tracing water environment characteristics in watershed. Impervious cover is divided into total impervious cover and effective impervious cover, and its size varies depending on the land use characteristics of a watershed. Total impervious cover can be easily measured using existing land use maps or land cover map, while it takes a considerable amount of time and labor to measure the effective impervious cover, as water flow should be identified at each site. This study is intended to calculate the total impervious cover and effective cover of a sample site, compare their characteristics, and find a method to apply effective and total impervious cover ratios toward watershed management. The analysis of the sample site showed that the effective impervious cover rate(39.7%) was less than the total impervious cover rate(43%). This suggests that it would be acceptable, in terms of time and cost, if total impervious cover is applied as the representative impervious cover ratio of a watershed considering that it was used as basic data to analyze the effect that impervious cover has on the water environment.

  • PDF

Comparative Evaluation of Impervious Ratio between KNU and HKU Campus Using Google Earth (Google Earth를 이용한 경북대와 홍콩대 캠퍼스의 불투수율 비교평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.421-433
    • /
    • 2009
  • The impervious ratio was frequently employed as a fundamental attribute will be used as a proxy of the total environmental burden in the urban area since it may contribute as much or more on a cumulative basis to the overall environmental condition. This research proposes a comparative evaluation framework in a more objective and Quantitative way for an impervious ratio in the university campus, using the Google Earth. Two university campuses (Kyungpook National University: KNU, Hong Kong University: HKUJ were selected as survey objectives in order to evaluate the potential of Google Earth in monitoring impervious conditions in the campus. The 61cm resolution of Quickbird data combined with digital map realistically identified the major type of impervious surface such as road, building and parking lots in the study area by large scale spatial precision. The impervious zones with persistently high road density and parking space were specifically identified over the KNU campus while the HKC campus was intensively covered by tree, resulting in almost twice (31%). as compared to KNU (18.4%), The methods of characterizing impervious surface used in this study are easily replicable using data that are primarily publicly available, and therefore the collection of impervious coverage data via Google Earth is, therefore, proposed as a practical alternative.

  • PDF

A Study to Evaluate Impervious Area Ratio by Geographic Information Data (지리정보자료에 따른 불투수면적률 산정 결과에 대한 연구)

  • Min Suh Chae;Kyoung Jae Lim;Joong-Hyuk Min;Minji Park;Jichul Ryu;Mijin Lee;Sohyeon Park;Youn Shik Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2023
  • Infiltration is a process by which precipitation infuses into subsurface soils. The process determines the surface flow and baseflow volume, and it is one of most important hydrological processes regarding nonpoint source pollution management. Therefore, the Ministry of Environment has developed a guideline to determine the impervious area ratio to understand the hydrological process in administrative districts and watersheds. The impervious area ratio can be determined using land use or land cover maps. Three approaches were explored to determine the impervious area ratio in 25 districts in Seoul. The impervious area ratio was determined by employing the Land registration map and Land property data in the first approach, Land property map in the second approach, and Land cover map in the third approach. The ratio ranged from 38.96% to 83.01% in the first approach, 38.98% to 83.02% in the second approach, and 37.62% to 76.63% in the third approach. Although the ranges did not provide any significant differences in the approaches, some districts displayed differences up to 9.48% by the approach. These differences resulted from the fact that the data were land use or land cover, especially in the area of airport, residential complex area, and school sites. In other words, division of the pervious and impervious areas in an individual plot was not allowed in the Land registration map, while it was allowed in the Land cover map. Therefore, it was concluded that there is a need to revise the guideline so that a reasonable impervious area ratio can be determined in the districts.

Study on Fish Diversity by Impervious Cover of Gyeongan-Stream Watershed (경안천 유역의 불투수면에 따른 어류다양성 연구)

  • Choi, Sun Hee;Kwon, Sun Soon;Lee, Sang Don
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.561-569
    • /
    • 2012
  • This study estimates landscape indices of the Gyeongan-stream watershed from 1975 to 2000 by classifying the land cover into impervious cover and pervious cover depending on its state using a landscape analysis program. For the indicator of biodiversity this study uses Total Core Area(TCA) among landscape indices. The estimated TCA is then used along with an Impervious Cover Model(ICM) to compare the number of fish species that appear in the Gyeongan-stream watershed. In the relations between TCA and the impervious cover ratio, it has been found that as the impervious cover ratio increases, TCA decreases accordingly. It shows that as the ratio of impervious cover in the landscape increases due to urbanization and development, the critical area that individual species need for isolation from outside has decreased. Also, the monitoring of the number of fish species that appear in the Gyeongan-stream watershed shows that in the areas with low impervious cover ratio there are more fish species appearing that inhabit in clean, uncontaminated water. It has been identified that the Gyeongan-stream watershed falls into the category of Impacted Stream and that its state is worsening, and since the watershed in this area responds to the impervious cover ratio very sensitively, its fish diversity it is required to improve the state of the basin through its proper and careful management.

Estimation of runoff coefficient through impervious covers analysis using long-term outflow simulation (장기유출 모의를 통한 도시유역 불투수율에 따른 유출계수 변화)

  • Kim, Young-Ran;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.635-645
    • /
    • 2014
  • The changes of rainfall pattern and impervious covers have increased disaster risks in urbanized areas. Impervious covers such as roads and building roofs have been dramatically increased. So, it is falling the ability safety of flood defense equipments to exist. Runoff coefficient means ratio of runoff by whole rainfall which is able to directly contribute at surface runoff during rainfall event. The application of accurate runoff coefficients is very important in sewer pipelines design. This study has been performed to estimate runoff characteristics change which are applicable to the process of sewer pipelines design or various public facilities design. It has used the SHER model, a long-term runoff model, to analyze the impact of a rising impervious covers on runoff coefficient change. It thus analyzed the long-term runoff to analyze rainfall basins extraction. Consequently, it was found that impervious surfaces could be a important factor for urban flood control. We could suggest the application of accurate runoff coefficients in accordance to the land Impervious covers. The average increase rates of runoff coefficients increased 0.011 for 1% increase of impervious covers. By having the application of the results, we could improve plans for facilities design.

A Study on the Calculation of Stormwater Utility Fee Using GIS based Impervious Surface Ratio Estimation Methodology (GIS 기반 불투수율 산정방법론을 활용한 강우유출수 부담금 모의산정 방안 연구)

  • Yoo, Jae Hyun;Kim, Kye Hyun;Choi, Ji Yong;Lee, Chol Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Korea needs to develop a rational system to separate stormwater utility fee from current sewerage fee. In this study, the scenario for calculating stormwater utility fee of Bupyeong-gu was suggested and the results were considered. For this purpose, the application of stormwater utility fee overseas and current domestic system were analyzed. A three step calculating scenario considering suitable domestic situation and impervious surface area was suggested. Water, sewerage usage, and hydrant data were collected. The total amount of water and sewerage fees for land use were calculated. The sewerage fee of Bupyeong-gu for the year 2014 was 21,685,446,578 won. Assuming that 40% of this amount was the cost associated to stormwater, the result showed that the fees for residential area in third step decreased by 0.77% compared to that of the first step. For commercial area, the stormwater utility fee decreased by 36.87%. For industrial area, although the consumption of water was similar to that of commercial area, the stormwater utility fee increased by 8.35%. For green area, the fee increased by 37.46%. This study demonstrated that the calculation of actual stormwater utility fee using impervious surface map and impervious Surface Ratio Estimation Methodology developed in previous studies is feasible.

A Study on Decentralized Rainwater Management by Analysing the Spacial Properties in Urban Housing Complexes (공동주택단지의 공간적 특성 분석을 통한 분산식 빗물관리 방향 설정)

  • Han, Young-Hae;Yang, Byoung-E;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 2005
  • Until today, rainwater management was processed without disposing the peak discharge, which was due to rainfall, to provide stability against flood damage. In this process, the natural hydrologic cycle changed quickly, and because of this, some problems that could harm human beings and the environment arose. These problems need to be addressed accordingly. One of the proposals was to carry out decentralized rainwater management through a natural hydrologic cycle on site, including utilization, infiltration, detention, and retention of rainwater. This study aims to set the direction of applicable decentralized rainwater management to housing complex in Korea. Therefore, spacial properties in urban housing complexes were analysed such as the impervious area-to-land ratio, the green area-to-land ratio, artificial land-to-land ratio etc. As the result of this study, when a housing complex was small and developed by reconstruction, the impervious area, artificial land, the green area in the artificial land-to-land ratio were high. So, direction of decentralized rainwater management of these housing complexes is available to utilize and detain rainwater. On the other hand, those of big housing complexes in land development district were low relatively. So, direction of decentralized rainwater management of these housing complexes is available to infiltrate and evaporate rainwater.

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

The Impacts of Built Environmental Features on the Land Surface Temperatures for the Heat Wave Seasons in Gwangju, South Korea (도시화에 따른 건조환경이 하절기 광주시 외부공간의 열환경에 미치는 영향에 대한 연구)

  • Hong, Sung-Woon;Yang, Dongwoo;Oh, Byoung-Chull
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.67-82
    • /
    • 2019
  • This study aims to examine the impacts of built environmental features on the nocturnal and diurnal temperatures during the heat wave season in Gwangju, Korea. Built environmental measures are summarized at micro-scale level, such as 50 meters and 100 meters from temperature monitoring spots. Regressing the built environment on nocturnal and diurnal temperatures, we estimate how the artificial constructs contribute to temperature either day and night times. We found that impervious surface ratio is positively and negatively associated with nocturnal and diurnal temperatures, respectively. Buildings and structures tend to construct high thermal mass and absorb heat during day time and emit it for the night time. This property contributes to the nocturnal temperature model. On the other hand, urban areas with more vertical structure tend to block sun radiation more than rural, and it is more likely to find the negative relationship between impervious surface ratio and the diurnal temperatures.

Analysis of runoff reduction performance of permeable pavement and rain barrel in Mokgam stream basin and determination of installation priorities (목감천 유역 내 투수성포장과 빗물저류조의 유출량 저감 성능 분석 및 설치 우선 순위 결정)

  • Chae, Seung-Tak;Chung, Eun-Sung;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.905-918
    • /
    • 2023
  • This study aimed to assess runoff reduction performance and determine installation priorities for Permeable Pavement (PP) and Rain Barrel (RB) within the Mokgam Stream basin. Optimal design parameters were determined to maximize the effectiveness of PP and RB in reducing runoff. Furthermore, the optimal parameters were incorporated to compare the runoff reduction performance of PP and RB. Analysis of the runoff curve at the basin outlet indicated that PP demonstrated superior performance in reducing runoff during the rising limb of the curve. At the same time, RB excelled within the falling limb. Comparisons of total runoff and peak runoff reduction by sub-catchment revealed that in larger sub-catchment areas, PP outperformed RB in runoff reduction. In contrast, RB exhibited higher performance in areas with a higher impervious ratio. Based on the evaluation of runoff reduction performance for PP and RB, installation priorities were determined within the Mokgam Stream basin. The results showed that PP and RB installations were prioritized for sub-catchments with larger areas and a higher impervious ratio. Furthermore, the correlation between the ranking of runoff reduction performance and sub-catchment characteristics showed a high correlation with both the impervious area ratio and sub-catchment geometrical properties in sub-watersheds exhibiting the top 25% runoff reduction performance. These results emphasize that when determining the priority for installing LID facilities in developed urban areas, it is necessary to consider not only the impervious area ratio but also the geometrical properties of the sub-catchment.