DOI QR코드

DOI QR Code

Analysis of runoff reduction performance of permeable pavement and rain barrel in Mokgam stream basin and determination of installation priorities

목감천 유역 내 투수성포장과 빗물저류조의 유출량 저감 성능 분석 및 설치 우선 순위 결정

  • Chae, Seung-Tak (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Park, Inhwan (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 채승택 (서울과학기술대학교 건설시스템공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템공학과) ;
  • 박인환 (서울과학기술대학교 건설시스템공학과)
  • Received : 2023.11.07
  • Accepted : 2023.11.29
  • Published : 2023.12.31

Abstract

This study aimed to assess runoff reduction performance and determine installation priorities for Permeable Pavement (PP) and Rain Barrel (RB) within the Mokgam Stream basin. Optimal design parameters were determined to maximize the effectiveness of PP and RB in reducing runoff. Furthermore, the optimal parameters were incorporated to compare the runoff reduction performance of PP and RB. Analysis of the runoff curve at the basin outlet indicated that PP demonstrated superior performance in reducing runoff during the rising limb of the curve. At the same time, RB excelled within the falling limb. Comparisons of total runoff and peak runoff reduction by sub-catchment revealed that in larger sub-catchment areas, PP outperformed RB in runoff reduction. In contrast, RB exhibited higher performance in areas with a higher impervious ratio. Based on the evaluation of runoff reduction performance for PP and RB, installation priorities were determined within the Mokgam Stream basin. The results showed that PP and RB installations were prioritized for sub-catchments with larger areas and a higher impervious ratio. Furthermore, the correlation between the ranking of runoff reduction performance and sub-catchment characteristics showed a high correlation with both the impervious area ratio and sub-catchment geometrical properties in sub-watersheds exhibiting the top 25% runoff reduction performance. These results emphasize that when determining the priority for installing LID facilities in developed urban areas, it is necessary to consider not only the impervious area ratio but also the geometrical properties of the sub-catchment.

본 연구에서는 목감천 유역에서 투수성포장(PP)과 빗물저류조(RB)의 설치에 의한 유출량 저감 성능 분석 및 유역 내 설치 우선순위를 결정했다. PP와 RB의 설치를 통한 최대 유출 저감 성능 도출을 위해 최적 설계인자를 결정했고, 최적 설계인자를 반영한 PP와 RB의 우수 유출 저감 성능을 비교했다. 유출량의 시계열 변화로부터 첨두유출량 발생 전에는 PP가, 첨두유출량 발생 후에는 RB가 유출량 저감에 더 우수한 성능을 나타냈다. PP와 RB의 설치에 따른 소유역 별 총 유출량, 첨두유출량 저감 성능을 비교한 결과, PP의 경우 유역면적이 큰 소유역에서 RB보다 더 높은 우수 유출저감 성능을 나타냈고 RB는 불투수면적 비율이 높은 지역에서 더 높은 성능을 나타냈다. PP와 RB의 우수 유출 저감 성능 평가 결과를 통해 목감천유역 내 두 시설의 설치 우선 순위를 결정했다. 그 결과, PP와 RB 모두 유역면적, 불투수면적 비율이 높은 소유역에서 높은 우선 순위가 나타났다. 또한 우수 유출 저감 성능 평가 순위와 유역특성 간 상관관계를 비교한 결과, 상위 25%의 우수 유출 저감 성능을 나타낸 소유역에서는 불투수면적외에도 유역의 형상 인자와 높은 상관관계를 보였다. 이를 통해 기존 도심 지역에 우수유출저감시설 설치 우선 순위 결정 시 불투수면적 비율과 함께 유역의 형상 인자를 함께 고려해야 함을 알 수 있다.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원(KEITI)의 R&D과제 "기후위기 대응 홍수방어능력 혁신기술 개발사업(RS-2023-00218873)"의 연구비 지원으로 수행되었습니다.

References

  1. Arjenaki, M.O., Sanayei, H.R.Z., Heidarzadeh, H., and Mahabadi, N.A. (2021). "Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (case study: Shahrekord City)." Modeling Earth Systems and Environment, Vol. 7, No. 1, pp. 1-16. https://doi.org/10.1007/s40808-020-00870-2
  2. Chae, S.T., Song, Y.H., Lee, J., and Chung, E.S. (2022). "Prioritizing the target watersheds for permeable pavement to reduce flood damage in urban watersheds considering future climate scenarios." Journal of Korea Water Resources Association, Vol. 55, No. 2, pp. 159-170. https://doi.org/10.3741/JKWRA.2022.55.2.159
  3. Gao, J., Li, J., Li, Y., Xia, J., and Peng, L. (2021). "A distribution optimization method of typical LID facilities for sponge city construction." Ecohydrology & Hydrobiology, Vol. 21, No. 1, pp. 13-22. https://doi.org/10.1016/j.ecohyd.2020.09.003
  4. Gwangmyeong-si (2023). Republic of Korea, accessed 1 September 2023, < https://news.gm.go.kr >.
  5. Jang, S.H., Lee, J., Yoo, C., Han, S., and Kim, S. (2008). "Optimal location of best management practices for storm water runoff reduction." Journal of Korean Society on Water Quality, Vol. 24, No. 2, pp. 180-184.
  6. Kim, J., and Joo, J. (2017). "A study on the performance comparison of the low impact development facilities for long-term stormwater reduction." Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 5, pp. 337-344. https://doi.org/10.9798/KOSHAM.2017.17.5.337
  7. Kim, J., and Kang, J. (2022). "Analysis of stormwater management and runoff reduction effect of LID facilities using SWMM model in Sangdo-dong." Journal of the Korea Academia-Industrial, Vol. 23, No. 8, 337.
  8. Kim, J., Lee, J., Hwang, S., and Kang, J. (2022). "Urban flood adaptation and optimization for net-zero: Case study of Dongjakgu, Seoul." Journal of Hydrology: Regional Studies, Vol. 41, 101110.
  9. Lee, K.S., Hong, W.P., Chung, E.S., and Kim, K.T. (2007). "Hydrologic cycle simulation of Mokgam watershed including CSOs." Proceedings of the Korea Water Resources Association (KWRA) Conference, KWRA, pp. 1459-1463.
  10. Liu, T., Lawluvy, Y., Shi, Y., and Yap, P.S. (2021). "Low impact development (LID) practices: A review on recent developments, challenges and prospects." Water, Air & Soil Pollution, Vol. 232, 344.
  11. Mullen, K.M., Ardia, D., Gil, D.L., Windover, D., and Cline, J. (2011). "DEoptim: An R package for global optimization by differential evolution." Journal of Statistical Software, Vol. 40, No. 6, pp. 1-26.
  12. Nazari, A., Roozbahani, A., Shahdany, S.M.H. (2023). "Integrated SUSTAIN-SWMM-MCDM approach for optimal selection of LID practices in urban stormwater systems." Water Resources Management, Vol. 37, pp. 3769-3793. https://doi.org/10.1007/s11269-023-03526-9
  13. Seo, K.W., Seo, S.B., Kim, K.M., Park, C., Park, H., and Yoo, J. (2023). "Genetic algorithm-based allocation of LID practices to mitigate urban flooding." Natural Hazards, doi: 10.1007/s11069-023-06226-0
  14. Shin, H.S., Kim, M.E., Kim, J.M., and Jang, J.K. (2013). "Study on anal ysis o f the proper r atio a nd t he e ffects of l ow impact development application to sewage treatment district." Journal of Korea Water Resources Association, Vol. 46, No. 12, pp. 1193-1207. https://doi.org/10.3741/JKWRA.2013.46.12.1193
  15. United States Environmental Protection Agency (USEPA) (2016a). Storm Water Management Model Reference Manual, Vol. 1 (Hydrology). Washington, D.C., U.S., pp. 1-233.
  16. United States Environmental Protection Agency (USEPA) (2016b). Storm Water Management Model Reference Manual, Vol. 3 (Water Quality). Washington, D.C., U.S., pp. 1-161.
  17. Wadhwa, A., Budamala, V., Kummamuru, P.K., Kasiviswanathan, K.S., and Srimuruganandam, B. (2023). "Low-impact development (LID) control feasibility in a small-scale urban catchment for altered climate change scenarios." Hydrological Sciences Journal, Vol. 68, No. 13, pp. 1-14. https://doi.org/10.1080/02626667.2023.2239797
  18. Wang, M., Feng, S., Ikram, R.M.A., Chen, T., Sun, C., Chen, B., Rao, Q., Jin, H., Li, J. (2023). "Assessing the performance and challenges of low-impact development under climate change: A bibliometric review." Sustainability, Vol. 15, No. 18, 13616.
  19. Yang, Y., and Chui, T.F.M. (2018). "Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management." Journal of Environmental Management, Vol. 206, No. 15, pp. 1090-1103. https://doi.org/10.1016/j.jenvman.2017.11.064
  20. Yuan, Y., Gan, Y., Xu, Y., Xie, Q., Shen, Y., and Yin, Y. (2022). "SWMM-based assessment of urban mountain stormwater management effects under different LID scenarios." Water, Vol. 14, No. 78, w14010078.
  21. Zahmatkesh, Z., Burian, S.J., Karamouz, M., Tavakol-Davani, H., and Goharian, E. (2015). "Low-impact evelopment practices to mitigate climate change effects on urban stormwater runoff: case study of New York City." Journal of Irrigation and Drainage Engineering, Vol. 141, No. 1, 04014043.
  22. Zhou, Z., Li, Q., He, P., Du, Y., Zou, Z., Xu, S., Han, X., and Zeng, T. (2023). "Impacts of rainstorm characteristics on flood inundation mitigation performance of LID measures throughout an urban catchment." Journal of Hydrology, Vol. 624, 129841.