• Title/Summary/Keyword: impedance

Search Result 6,452, Processing Time 0.03 seconds

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Dual-band Planar Monopole Antenna for Autonomous Vehicle (자율주행자동차를 위한 이중대역 평판 모노폴 안테나)

  • Yoon, Yonghyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2019
  • In this paper, a dual-band antenna is proposed for the autonomous vehicle as well as omni-directional. The proposed antenna operates in the 4G/LTE band (1,710~2,170MHz) and 5G/NR band (3,400~3,700MHz). In order to obtain the dual-band operation, the planar monopole antenna is proposed as the novel structure with single port of the 50ohm. To give the properties of dual-band, an additional antenna element with slit was added to the planar monopole antenna, and then a structural adjustment parameter was optimized for achieving the target performance in bands. The planar monopole antenna in the LTE band acts as the coupled feed for the added parasitic radiator in the 5G NR band. The proposed antenna has $38.5{\times}36.0{\times}1.0[mm^3]$ on a ground with diameter of 96mm. From the fabrication and measurement results, the impedance bandwidth (VSWR<2) of the proposed antenna covers 1,480~2,260MHz (LTE band: 1,710~2,170MHz) and 3,310~3,930MHz (5G NR band: 3,400~3,700MHz). The proposed planar monopole antenna also obtained the measured gain and radiation pattern of omni-directional radiation pattern in the anechoic chamber.

High temperature electrical properties of Sr-and Mg-Doped LaAlO3 (억셉터(Sr, Mg)가 첨가된 LaAlO3의 고온 전도 특성)

  • Park, Ji Young;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2019
  • Perovskite-type oxides have consistently attracted considerable attention for their applications in high-temperature electrochemical devices, such as electrolytes and electrodes of solid oxide fuel cells, oxygen permeating membranes and sensors etc. Among them, the electrical conductivity of 10 % Sr and 10 % Mg doped $LaAlO_3$ (LSAM9191) was measured using impedance spectroscopy and 4-probe d.c. method. Below $550^{\circ}C$, the grain boundary resistance mostly determined the overall conductivity; however, it nearly disappeared above $800^{\circ}C$. Using the defect model and curve fitting, the ionic and electronic conductivity contributions were also separated. In the temperature region where the sample resistance is mostly determined by the grain volume property, LSAM9191 was an oxygen ion conductor at low $Po_2$ and a mixed conductor at high $Po_2$. With increasing temperature, the ionic conduction region only slightly increased. Thus, LSAM9191 is a promising material as an oxygen ion conductor at high temperature and in low $Po_2$.

Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte (탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석)

  • Kim, Chang Hyun;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • In this study, flexible supercapacitor based on the all solid state electrolyte with PVA (polyvinyl alcohol)-$H_3PO_4$, ionic liquid as a BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate) and reduced graphene oxide/conductive polymer composite was fabricated and characterized electrochemical properties with function of its flexibility. In order to measure and compare that electrochemical performances (including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge,after 0~100th bending test) of prepared flexible supercapacitor based on reduced graphene oxide/conducting polymer composite and all solid state electrolyte, we have conducted press machine with constant pressure ( 0.01/cm2) for $100^{th}$ bending test. As a result, specific capacitance of the flexible supercapacitor was 43.9 F/g which value decreased to 42.0 and 40.1 F/g after 50 and $100^{th}$ bending test, respectively. This result exhibited that decreased electrochemical property of the flexible supercapacitor effected on physical stress on the electrode after repeated bending test. In addition, we have measured that electrode surface morphology by SEM to prove its decreased electrochemical property of the flexible supercapacitor after prolonged bending test.

Effect of Dispersion Solvent on Properties of Fluorinated Polymer Reinforced Composite Membrane for Fuel Cell by Solution Coating Method (용액 코팅법을 통한 연료전지용 불소계 전해질 강화복합막의 특성에 미치는 분산용매의 영향)

  • Yook, Seung Ho;Yoon, Ki Ro;Choi, Jihun;Lee, Ju Sung;Kim, Jong Min;Lee, Seung Woo;Lee, Kwan-Young;Kim, Jin Young
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.413-419
    • /
    • 2019
  • In the recent, as a world demand of energy resources has been transformed from fossil fuels to hydrogen-based clean energy resources, a huge attention has been attracted to increase the performance and decrease a production cost of core materials in fuel cell technology. The utilization of reinforced composite membranes as electrolytes in the polymer electrolyte membrane fuel cells can reduce the use of high cost perfluorosulfonic acid (PFSA), mitigate the cell impedance, and improve the dimensional stability as well as the interfacial stability, giving rise to achieve both an improved performance and a reduction of production costs of the fuel cell devices. In this study, we investigate the effects of physical characteristics and cell performances according to the various ionomer solvents in the solution based manufacturing process of reinforced composite electrolyte membrane.

Durability Evaluation of Stationary PEMFC MEA by OCV Holding Method (정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가)

  • Oh, So-Hydong;Lee, Mihwa;Yun, Jeawon;Lee, Hakju;Kim, Wookwon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.344-350
    • /
    • 2019
  • Durability is very important for the commercialization of membranes and electrode assemblies (MEA) developed for proton exchange membrane fuel cells (PEMFC). Durability evaluation of stationary PEMFC MEA has a problem that the voltage change rate should be measured for a long time over 1000 hours under constant current conditions. In this study, the electrochemical durability evaluation protocol of membranes (OCV holding method) using to vehicle MEAs was applied to the stationary MEA for the purpose of shortening the durability evaluation time. After operation of the stationary and automobile MEA for 168 hours under conditions of OCV, cathode oxygen, $90^{\circ}C$ and relative humidity of 30%, I-V, LSV, CV, impedance and FER were measured and compared. When the hydrogen permeability, OCV change, ionic conductivity, and fluorine flow rate, which represent the durability of the membrane after degradation, were all examined, it was shown that durability of stationary MEA membrane was better than that of vehicles MEA membrane. In addition, the electrode degradation of stationary MEA was smaller than that of vehicles MEA after degradation operation. It was possible to evaluate in a short time using automotive protocol that the durability of stationary MEA was superior that of vehicle MEA in terms of membrane and the electrode.

The Anti-obesity Effects of Bangpungtongseong-san and Daesiho-tang: A Study Protocol of Randomized, Double-blinded Clinical Trial (방풍통성산 및 대시호탕의 항비만효과 분석: 단일기관 무작위배정 이중맹검 임상시험 프로토콜)

  • Oh, Jihong;Shim, Hyeyoon;Cha, Jiyun;Kim, Ho Seok;Kim, Min Ji;Ahn, Eun Kyung;Lee, Myeong-Jong;Lee, Jun-Hwan;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the effects of Bangpungtongseong-san (Fangfengtongsheng-san, BTS) and Daesiho-tang (Dachaihu-tang, DST) on weight loss and improvement in lipid metabolism and glucose metabolism. Furthermore, we intend to develop a prediction model for drug effects through the analysis of the single nucleotide polymorphism (SNP), gut-microbiota, and the expression of immune-related biomarkers. Methods: This study is a single-center, randomized, double-blind, parallel-design clinical trial. One hundred twenty-eight participants will be assigned to the BTS group (n=64) and DST group (n=64). Both groups will be administered 4 g medication three times a day for up to 2 weeks. The primary outcomes is weight loss. The secondary outcomes include bioelectrical impedance analysis, waist circumstance, body mass index, total cholesterol, high-density lipoprotein, triglyceride, insulin resistance. The exploratory outcomes include 3-day dietary recall, food frequency questionnaire, quality of life questionnaire, gut microbiota analysis, immune biomarkers analysis, and SNP analysis. Assessment will be made at baseline and at week 4, 8, and 12. Conclusions: This protocol will be implemented by approval of the Institutional Review Board of Dongguk University. The results of this trial will provide a systematic evidence for the treatment of obesity and enable more precise herbal medicine prescriptions.

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis (양이온 교환막 수전해용 산화전극 확산층의 표면 특성 제어를 통한 전기화학적 성능 개선 연구)

  • Lee, Han Eol;Linh, Doan Tuan;Lee, Woo-kum;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.332-339
    • /
    • 2021
  • Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.

A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System (LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구)

  • Kang, Min-Kwan;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.768-776
    • /
    • 2021
  • Current protection-coordination methods use the reverse time characteristics of the T-C curve, which is not effective for a LVDC distribution system because the protective operation time of converters and DC circuit breakers is much faster than AC protection devices. Therefore, an algorithm is proposed for fault-section isolation using the fault current slope to minimize the blackout region and coordinate between converters and protection devices in a rapid and accurate manner. The method deals with the slope characteristics of a fault current, which may depend on the fault location in an LVDC distribution system. Thus, an LVDC distribution system can be operated in a stable manner by isolating the fault section selectively before the shutdown of the main converter using slope characteristics, which change in proportion to the line impedance and fault location. A 1.5-kV LVDC distribution system was modeled to verify the effectiveness of the proposed algorithm using PSCAD/EMTDC. The system is composed of a distribution substation, LVDC converter, and distribution lines. The simulation results confirm that the proposed algorithm is a useful tool for minimizing the fault section in an LVDC distribution system.