Browse > Article
http://dx.doi.org/10.14478/ace.2021.1043

Study on the Improvement of Electrochemical Performance by Controlling the Surface Characteristics of the Oxygen Electrode Porous Transport Layer for Proton Exchange Membrane Water Electrolysis  

Lee, Han Eol (Graduate School of Energy Science and Technology, Chungnam National University)
Linh, Doan Tuan (Graduate School of Energy Science and Technology, Chungnam National University)
Lee, Woo-kum (Department of Energy & Electrical Engineering, Woosuk University)
Kim, Taekeun (Department of Chemical Engineering Education, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 332-339 More about this Journal
Abstract
Recently, due to concerns about the depletion of fossil fuels and the emission of greenhouse gases, the importance of hydrogen energy technology, which is a clean energy source that does not emit greenhouse gases, is being emphasized. Water electrolysis technology is a green hydrogen technology that obtains hydrogen by electrolyzing water and is attracting attention as one of the ultimate clean future energy resources. In this study, the surface properties of the porous transport layer (PTL), one of the cell components of the proton exchange membrane water electrolysis (PEMWE), were controlled using a sandpaper to reduce overvoltage and increase performance and stability. The surfaces of PTL were sanded using sandpapers of 400, 180, and 100 grit, and then all samples were finally treated with the sandpaper of 1000 grit. The prepared PTL was analyzed for the degree of hydrophilicity by measuring the water contact angle, and the surface shape was observed through SEM analysis. In order to analyze the electrochemical characteristics, I-V performance curves and impedance measurements were conducted.
Keywords
Proton exchange membrane water electrolysis; Porous transport layer; Surface treatment; Sandpaper;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Pandiyan, A. Uthayakumar, R. Subrayan, S. W. Cha, and S. B. Krishna Moorthy, Review of solid oxide electrolysis cells: A clean energy strategy for hydrogen generation, Nanomater. Energ., 8, 2-22 (2019).   DOI
2 J. P. Stempien, Q. Sun, and S. H. Chan, Solid oxide electrolyzer cell modeling: A review, J. Power Technol., 93, 216- 246 (2013).
3 M. Wang, Z. Wang, X. Gong, and Z. Guo, The intensification technologies to water electrolysis for hydrogen production - A review, Renew. Sustaina. Energy Rev., 29, 573-588 (2014)   DOI
4 J. O. Majasan, F. Iacoviello, P. R. Shearing, and D. J. Brett, Effect of microstructure of porous transport layer on performance in polymer electrolyte membrane water electrolyser, Energy Procedia, 151, 111-119 (2018).   DOI
5 F. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan, A. Durrant, J. Thompson, and A. Olabi, Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review, Renew. Sustain. Energy Rev., 111, 1-14 (2019).   DOI
6 M. Buhler, P. Holzapfel, D. McLaughlin, and S. Thiele, From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers, J. Electrochem. Soc., 166, F1070 (2019).   DOI
7 A. Nouri-Khorasani, E. T. Ojong, T. Smolinka, and D. P. Wilkinson, Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells, Int. J. Hydrog. Energy, 42, 28665-28680 (2017).   DOI
8 X. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, and G. Wang, A room-temperature sodium-sulfur battery with high capacity and stable cycling performance, Nat. commun., 9, 1-12 (2018).   DOI
9 M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation - Approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 5, 7854-7863 (2012).   DOI
10 D. Kumar, S. K. Rajouria, S. B. Kuhar, and D. Kanchan, Progress and prospects of sodium-sulfur batteries: A review, Solid State Ionics, 312, 8-16 (2017).   DOI
11 A. Bates, S. Mukerjee, S. C. Lee, D.-H. Lee, and S. Park, An analytical study of a lead-acid flow battery as an energy storage system, J. Power Sources, 249, 207-218 (2014).   DOI
12 J. Mo, R. R. Dehoff, W. H. Peter, T. J. Toops, J. B. Green Jr, and F.-Y. Zhang, Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production, Int. J. Hydrog. Energy, 41, 3128-3135 (2016).   DOI
13 P. Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A.-S. Gago, and K. A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., 10, 2521-2533 (2017).   DOI
14 J. Lopata, Z. Kang, J. Young, G. Bender, J. Weidner, and S. Shimpalee, Effects of the transport/catalyst layer interface and catalyst loading on mass and charge transport phenomena in polymer electrolyte membrane water electrolysis devices, J. Electrochem. Soc., 167, 064507 (2020).   DOI
15 R. Omrani, and B. Shabani, Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: A review, Int. J. Hydrog. Energy, 42, 28515-28536 (2017).   DOI
16 M. H. Chakrabarti, S. Hajimolana, F. S. Mjalli, M. Saleem, and I. Mustafa, Redox flow battery for energy storage, Arab. J. Sci. Eng., 38, 723-739 (2013).   DOI
17 Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011).   DOI
18 Z. Kang, G. Yang, J. Mo, Y. Li, S. Yu, D. A. Cullen, S. T. Retterer, T. J. Toops, G. Bender, and B. S. Pivovar, Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells, Nano Energy, 47, 434-441 (2018).   DOI
19 P. Mukherjee, and V. Rao, Design and development of high temperature superconducting magnetic energy storage for power applications-A review, Physica C: Supercond., 563, 67-73 (2019).   DOI
20 H. Zhang, X. Li, and J. Zhang, Redox Flow Batteries: Fundamentals and Applications, 1st ed., 33487-2742, CRC Press, Florida, USA (2017).
21 J. Brauns and T. Turek, Alkaline water electrolysis powered by renewable energy: A review, Processes, 8, 248 (2020).   DOI
22 M. David, C. Ocampo-Martinez, and R. Sanchez-Pena, Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23, 392-403 (2019).   DOI
23 J. Ma, Q. Li, M. Kuhn, and N. Nakaten, Power-to-gas based subsurface energy storage: A review, Renew. Sustain. Energy Rev., 97, 478-496 (2018).   DOI
24 E. Zoulias, E. Varkaraki, N. Lymberopoulos, C. N. Christodoulou, and G. N. Karagiorgis, A review on water electrolysis, TCJST, 4, 41-71 (2004).
25 M. Ni, M. K. Leung, and D. Y. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrog. Energy, 33, 2337-2354 (2008).   DOI
26 L. M. Gandia, R. Oroz, A. Ursua, P. Sanchis, and P. M. Dieguez, Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions, Energy Fuels, 21, 1699-1706 (2007).   DOI
27 P. Haug, B. Kreitz, M. Koj, and T. Turek, Process modelling of an alkaline water electrolyzer, Int. J. Hydrog. Energy, 42, 15689-15707 (2017).   DOI
28 L. Chen, T. Zheng, S. Mei, X. Xue, B. Liu, and Q. Lu, Review and prospect of compressed air energy storage system, J. Mod. Power Syst. Clean Energy, 4, 529-541 (2016).   DOI
29 S. Rehman, L. M. Al-Hadhrami, and M. M. Alam, Pumped hydro energy storage system: A technological review, Renew. Sustain. Energy Rev., 44, 586-598 (2015).   DOI
30 E. Barbour, I. G. Wilson, J. Radcliffe, Y. Ding, and Y. Li, A review of pumped hydro energy storage development in significant international electricity markets, Renew. Sustain. Energy Rev., 61, 421-432 (2016).   DOI
31 L. Kouchachvili, W. Yaici, and E. Entchev, Hybrid battery/supercapacitor energy storage system for the electric vehicles, J. Power Sources, 374, 237-248 (2018).   DOI
32 V. S. Vulusala G, and S. Madichetty, Application of superconducting magnetic energy storage in electrical power and energy systems: A review, Int. J. Energy Res., 42, 358-368 (2018).   DOI
33 J. Wang, K. Lu, L. Ma, J. Wang, M. Dooner, S. Miao, J. Li, and D. Wang, Overview of compressed air energy storage and technology development, Energies, 10, 991 (2017).   DOI
34 M. E. Amiryar, and K. R. Pullen, A review of flywheel energy storage system technologies and their applications, Appl. Sci., 7, 286 (2017).   DOI
35 F. Faraji, A. Majazi, and K. Al-Haddad, A comprehensive review of flywheel energy storage system technology, Renew. Sustain. Energy Rev., 67, 477-490 (2017).   DOI
36 A. Afif, S. M. Rahman, A. T. Azad, J. Zaini, M. A. Islan, and A. K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage - A review, J. Energy Storage, 25, 100852 (2019).   DOI
37 F. Schipper and D. Aurbach, A brief review: Past, present and future of lithium ion batteries, Russ. J. Electrochem., 52, 1095-1121 (2016).   DOI
38 S. S. Kumar, and V. Himabindu, Hydrogen production by PEM water electrolysis - A review, Mater. Sci. Energy Technol., 2, 442- 454 (2019).   DOI
39 J. Hughes, J. Clipsham, H. Chavushoglu, S. Rowley-Neale, and C. Banks, Polymer electrolyte electrolysis: A review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts, Renewa. Sustain. Energy Rev., 139, 110709 (2021).   DOI
40 P. Shirvanian, and F. van Berkel, Novel components in Proton Exchange Membrane (PEM) Water Electrolyzers (PEMWE): Status, challenges and future needs. A mini review, Electrochem. Commun., 114, 106704 (2020).   DOI
41 B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park, and S. W. Nam, Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis, Appl. Catal. B: Environ., 179, 285-291 (2015).   DOI
42 M. Ji and Z. Wei, A review of water management in polymer electrolyte membrane fuel cells, Energies, 2, 1057-1106 (2009).   DOI
43 Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-55 (2017).   DOI
44 X.-Z. Yuan, H. Li, S. Zhang, J. Martin, and H. Wang, A review of polymer electrolyte membrane fuel cell durability test protocols, J. Power Sources, 196, 9107-9116 (2011).   DOI
45 J. Park, H. Oh, T. Ha, Y. I. Lee, and K. Min, A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation, Appl. Energy, 155, 866-880 (2015).   DOI
46 B. G. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9, 246 (2019).   DOI
47 M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis, Int. J. Eng. Adv. Technol., 4, 2249-8958 (2015).