• Title/Summary/Keyword: impact stresses

Search Result 253, Processing Time 0.024 seconds

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 이천수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.121-124
    • /
    • 1998
  • It is well known that during the oxygen cutting residual thermal stresses are produced in weldment. Surface compressive residual stress is one of reasons for improvement on fatigue durability. To reduce the residual stress and improve the fatigue strength applied the impact loading in oxygen cutting frame. After applying the impact loading, redistribution of residual stress was measured by cutting method and tested fatigue tests.

  • PDF

Interlaminar Shear Stresses of Laminated Composite Plates Subjected to Transversely Imp (횡방향 충격을 받는 적층복합판의 층간전단응력 해석)

  • Ahn, Kook-Chan;Park, Seung-Bum;Kim, Bong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • This paper demonstrates the analyses of the interlaminar shear stress of laminated composite plates subjected to transversely impact. For this purpose, a plate finite element model based on the higher order shear deformation plate theory in conjunction with static contact laws is developed. Test materials were CFRP with cross-ply laminate $[O_4/{\theta}_4]_S$, $[90_4/{\theta}_4]_S$ stacking sequences and angle-ply laminate $[{\theta}_4/-{\theta}_4]_S$, $[{\theta}_4/-{\theta}_4]_S$ stacking deguences with $2^t{\times}40^w{\times}100^l(mm)$ dimension. As a result, stacking seguence and fiber orientation were found to have a significant effect on the interlaminar stresses in composite laminates.

Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

  • Geiser, Jurgen;Calov, Reinhard
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.325-343
    • /
    • 2012
  • We present different numerical methods for solving the shallow shelf equations with basal drag (SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations using standard methods. Then, the coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we could apply a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane stresses. We show that this splitting accelerates and stabilize the computational performance of the numerical method, although an appropriate choice of the standard method used to solve for all operators in one step speeds up the scheme as well.

Contact Singular Stress with Relief Notch by Using Dynamic Photoelasticity (동적광탄성 실험에 의한 응력이완 노치부근에서의 접촉특이응력해석)

  • 이억섭;황시원;나경찬
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • The dynamic photoelastic technique has been utilized to investigate the possibility of relieving the large local singular stresses which are induce in the corner of a right angled indenter. The indenter compresses a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effect of geometric changes to the indenter in terms of the diameter (d) and the location (ℓ) of the notch on the relieving of the dynamic contact stresses are investigated. A multi-spark-high speed camera with twelve sparks was used to take dynamic photographs. The contact singular stresses were found to be released by introducing the relief notch along the indenter. The optimal location and geometry of the relief notch need further experimental investigation.

  • PDF

Distribution Characteristics of Residual Compressive Stresses Induced by Shot-peening in the Aircraft Structural Material (항공기 구조용 재료의 쇼트피닝에 의한 압축 잔류응력의 분포 특성)

  • 이환우;박영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.149-157
    • /
    • 2004
  • Residual stresses can have a significant influence on the fatigue lives of structural engineering components. For the accurate assessment of fatigue lifetimes a detailed knowledge of the residual stress profile is required. Significant advances have been made in recent years fur obtaining accurate and reliable determinations of residual stress distributions. These include both experimental and numerical methods. The purpose of this study is to simulate peening process with the help of the finite element method in order to predict the magnitude and distribution of the residual stresses in accordance with the parameters, which are, e.g. shot velocity, shot diameter, shot impact angle, shot shape, distance between two impinging shots, and material parameters.

Determining Vibration Qualification Level for the Equipment Loaded Inside a Tracked Vehicle (궤도차량 탑재장비의 진동 내구성 평가를 위한 시험수준 결정방법 연구)

  • Choi, Chang-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • The equipment composed of many complicated electronic stuffs undergoes diverse stresses caused by mechanical vibrations during its service. Thus, to ensure its proper operation in the field a simulated vibration test has to be carried out in the laboratory with the Vibration Qualification Level, the test specification, which can include the real environment. In this paper we intent to deal with method and procedure for determining the Vibration Qualification Level so as to estimate the vibration-endurance for the equipment precisely.

  • PDF

Modeling interply debonding in laminated architectural glass subject to low velocity impact

  • Flocker, F.W.;Dharani, L.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.485-496
    • /
    • 1998
  • Standard finite element wave propagation codes are useful for determining stresses caused by the impact of one body with another; however, their applicability to a laminated system such as architectural laminated glass is limited because the important interlayer delamination process caused by impact loading is difficult to model. This paper presents a method that allows traditional wave propagation codes to model the interlayer debonding of laminated architectural glass subject to low velocity, small missile impact such as that which occurs in severe windstorms. The method can be extended to any multilayered medium with adhesive bonding between the layers. Computational results of concern to architectural glazing designers are presented.

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Repeated impact response of bio-inspired sandwich beam with arched and honeycomb bilayer core

  • Ahmad B.H. Kueh;Juin-Hwee Tan;Shukur Abu Hassan;Mat Uzir Wahit
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.755-764
    • /
    • 2023
  • The article examines the impact response of the sandwich beam furnished by a novel bilayer core as inspired by the woodpecker's head architecture under different repeatedly exerted low-velocity impact loadings by employing the finite element package, ABAQUS. The sandwich beam forms four essential parts comprising bottom and top carbon fiber reinforced polymer laminates encasing bilayer core made of laterally arched solid hot melt adhesive material and aluminum honeycomb. Impact loadings are implemented repeatedly with a steel hemisphere impactor for various impact energies, 7.28 J, 9.74 J, and 12.63 J. Essentially, the commonly concentrated stresses at the impact region are regulated away by the arched core in all considered cases thus reducing the threat of failure. The sandwich beam can resist up to 5 continual impacts at 7.28 J and 9.74 J but only up to 3 times repeated loads at 12.63 J before visible failure is noticed. In the examination of several key impact performance indicators under numerous loading cases, the proposed beam demonstrates favorably up to 1.3-11.2 higher impact resistance efficacies compared to existing designs, therefore displaying an improvement in repeated impact resistance of the new design.

Analysis of Contact Singular Stresses with Relief Notch by Using Dynamic Photoelasticity(II) (동적 광탄성실험에 의한 응력이완 노치부근에서의 접촉특이응력 해석 (2))

  • Lee, Eok-Seop;Hwang, Si-Won;Nah, Gyeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2097-2107
    • /
    • 1996
  • The dynamic photoelastic technique had been utilized to investigate the possibillity of relieving the large local singular stresses induced at the corner of a right- angle- indenter. The indenter compressed a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effects of the geometric changes of the indenter in terms of the diameter (d) and the location (1) of the stress relieving notch on the behavior of the dynamic contact stresses were investigated. The influence of stress relieving notches positioned along the edge of the semi-infinite body on the dynamic contact stresses were also studied by changing the diameter (D) and the location (L) of the notch. A multi-speak-high speed camera with twelve sparks were used to take photographs of full field dynamic isochromatic fringe patterns. The contact singular stresses were found to be released significantly by the stress relief notches both along the indenter and the edge of the semi-infinite body. The optimal position and geometry of the stress relieving notches were obtained with the aid of limited experimental results.