Browse > Article
http://dx.doi.org/10.12989/aas.2017.4.6.679

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate  

Kaci, D. Ait (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes)
Madani, K. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes)
Mokhtari, M. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes)
Feaugas, X. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, Universite La Rochelle)
Touzain, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, Universite La Rochelle)
Publication Information
Advances in aircraft and spacecraft science / v.4, no.6, 2017 , pp. 679-699 More about this Journal
Abstract
The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.
Keywords
plane-strain; numerical simulation; composites; damage analysis; delamination; fibre composite multilayer plates; modelling;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Breitzman, T.D., Iarve, E.V., Cook, B.M., Schoeppner, G.A. and Lipton, R.P. (2009), "Optimization of a composite scarf repair patch under tensile loading", Compos. Part A: Appl. Sci. Manufact., 40(12), 1921-1930.   DOI
2 Brighenti, R., Carpinteri, A. and Vantadori, S. (2006), "A genetic algorithm applied to optimization of patch repair for cracked plates", Comput. Meth. Appl. Mech. Eng., 196(1), 466-475.   DOI
3 Campilho, R.D.S.G., Moura, M.F.S.F. and Domingues, J.J.M.S. (2005), "Modeling single and double-lap repairs on composites materials", Compos. Sci. Technol., 65(13), 1948-1958.   DOI
4 Charalambides, M.N., Hardouin, R., Kinloch, A.J. and Matthews, F.L. (1998), "Adhesively-bonded repairs to fiber-composite materials", I. Exper. Compos. A, 29(11), 1371-1381.   DOI
5 Charalambides, M.N., Kinloch, A.J. and Matthews, F.L. (1998), "Adhesively-bonded repairs to fibercomposite materials II, finite element modeling", Compos. A, 29(11), 1383-1396.   DOI
6 Costa Mattos, H.S., Monteiro, A.H. and Palazzetti, R. (2012), "Failure analysis of adhesively bonded joints in composite materials", J. Mater. Des., 33, 242-247.   DOI
7 Costa, T.R.F. Serrano, A.M., Atman, A.P.F., Loguercio, A.D. and Reis, A. (2012), "Durability of composite repair using different surface treatments", J. Dentist., 40(6), 513-521.   DOI
8 Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326.   DOI
9 Erdogan, F. and Ratwani, M. (1971), "Stress distribution in bonded joints", J. Compos. Mater., 5(3), 378-393.   DOI
10 Gong, X.J., Cheng, P., Rousseau, J. and Aivazzadeh, S. (2007), "Effect of local stresses on static strength and fatigue life of patched composite panels", Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan.
11 Gong, X.J.P., Cheng, R.J. and Aivazzadeh, S. (2007), "Effect of local stresses on static strength and fatigue life of patched composite panels", Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan.
12 Grabovac, I. and Whittaker, D. (2009), "Application of bonded composites in the repair of ships structures-a 15-year service experience", Compos. Part A, 40(9), 1381-1398.   DOI
13 ABAQUS/CAE (2015), Ver 6.14 User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
14 Ayatollahi, M.R. and Hashemi, R. (2007), "Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching", Compos. Struct., 78(4), 602-609.   DOI
15 Bartholomeusz, R.A., Baker, A.A., Chester, R.J. and Searl, A. (1999), "Bonded joints with throughthickness adhesive stresses-reinforcing the F/A-18 Y470.5 bulkhead", J. Adhes., 19(2-3), 173-180.   DOI
16 Belhouari, M., Bouiadjra, B.B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis", Compos. Struct., 65(1), 47-53.   DOI
17 Ting, T., Jones, R., Chiu, W.K., Marshall, I.H. and Greer, J.M. (1999), "Composites repairs to rib stiffened panels", Compos. Struct., 47(1), 737-743.   DOI
18 Tenchev, R.T. and Falzon, B.G. (2008), "An experimental and numerical study of the static and fatigue performance of a composite adhesive repair", Key Eng. Mater., 383, 10.4028.   DOI
19 Thrall Jr Edward, W. (1977), "Primary adhesively bonded structure technology", J. Aircraft, 14, 588-594.   DOI
20 Thrall Jr Edward, W. (1979), "PABST program test results", Adhes. Age, 22, 22-33.
21 Tsai, G.C. and Shen, S.B. (2004), "Fatigue analysis of cracked thick aluminum plate bonded with composite patches", Compos. Struct., 64(1), 79-90.   DOI
22 Turaga, V.R.S. and Ripudaman, S. (1999), "Modeling of patch repairs to a thin cracked sheet", Eng. Fract. Mech., 62(2), 267-289.   DOI
23 Sabelkin, V., Mall, S., Hansen, M.A. and Derriso, R.M. (2007), "Investigation into cracked aluminum plate repaired with bonded composite patch", Compos. Struct., 79(1), 55-66.   DOI
24 Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three-dimensional crack front in a thermally stressed body", J. Fract., 30, 79-102.
25 Icten, B.M. and Karakuzu, R. (2002), Compos. Sci. Technol., 62, 1259-1271.   DOI
26 Hart-Smith, L.J. (1987), "Design of adhesively bonded joints, joining fiber-reinforced plastics", 19, 271-311.
27 Hosseini-Toudeshky, H. and Mohammadi, B. (2009), "Thermal residual stresses effects on fatigue crack growth of repaired panels bounded with various composite materials", Compos. Struct., 89(2), 216-223.   DOI
28 Hosseini-Toudeshky, H., Mohammadi, B. and Daghyani, H.R. (2003), "Fatigue crack growth rate of adhesively repaired thin aluminum panels in general mixed-mode condition", Proceedings of the 11th Annual Conference on Mechanical Engineering, Mashad, Iran, May.
29 Jones, R. and Callinan, R.J. (1979), "Finite element analysis of patched cracks", J. Struct. Mech., 7(2), 107-130.   DOI
30 Kilic, B., Madenci, E. and Ambur, D.R. (2006), "Influence of adhesive spew in bonded single-lap joints", Eng. Fract. Mech., 73, 1472-1490.   DOI
31 Klung, J.C. and Sun, C.T. (1998), "Large deflection effects of cracked aluminum plates repaired with bonded composite patches", Compos. Struct., 42(3), 291-296.   DOI
32 Liu, X. and Wang, G. (2007), "Progressive failure analysis of bonded composite repairs", Compos. Struct., 81(3), 331-340.   DOI
33 Madani, K. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93.   DOI
34 Madani, K., Touzain, S., Feaugas, X., Roy, A. and Cohendoz, S. (2009), "Analyze of the notch effect on the distribution of the stresses in the adhesive layer between two bonded aluminum 2024-T3 plates", J. Mater. Technol., 97(5), 315-324.   DOI
35 Ouinas, D., Hebbar, A., Bachir Bouiadjra, B., Belhouari, M. and Serier, B. (2009), "Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch", Compos. B Eng., 40(8), 804-810.   DOI
36 Moreira, R.D.F., De Moura, M.F.S.F., Figueiredo, M.A.V., Fernandes, R.L.A. and Goncalves, J.P.M. (2015), "Characterisation of composite bonded single-strap repairs under fatigue loading", J. Mech. Sci., 103, 22-29.   DOI
37 Naboulsi, S. and Mall, S. (1996), "Modeling of a cracked metallic structure with bonded composite patch using the three layer technique", Compos. Struct., 35(3), 295-308.   DOI
38 Naveen, R., Soni, S.R. and Denney, J.J. (1883), "Analysis of bonded composite patch repaired metallic structures-an overview of aging aircraft", AIAA98, 1578-1588.
39 Qing, X.P., Beard, S.J., Kumar, A. and Hannum, R. (2006), "A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure", Smart Mater. Struct., 15(3), 66-73.   DOI
40 Benchiha, A. and Madani, K. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-1030.   DOI
41 Benchiha, A., Madani, K., Touzain, S., Feaugas, X. and Ratwani, M. (2016), "Numerical analysis of the influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch", Steel Compos. Struct., 20(4), 951-962.   DOI
42 Botelho, E.C. (2009), "Fatigue behavior study on repaired aramid fiber/epoxy composites", J. Aerosp., Technol. Manage. V, 1(2), 217-221.   DOI
43 Mitchel, R.A., Woolley, R.J. and Chwirut, D.J. (1975), "Analysis of composite reinforced cut-outs and cracks", AIAA J., 13(6), 744-749.   DOI