• Title/Summary/Keyword: impact response analysis

Search Result 1,071, Processing Time 0.027 seconds

A Basic Study of the European Side Impact Characteristics of Electric Vehicle(II) (전기자동차의 유럽 측면 충돌 특성 기초 연구(II))

  • 조용범;신효철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.143-152
    • /
    • 2002
  • European side impact analysis of an electric vehicle was done using the robust design method. In order to minimize VC as well as rib deflection, the injury response table which consists of rib deflection and VC response table has been introduced. The sensitivities and interactions are almost the same when it was compared with those of rib deflection and VC response table. Using internal energy of the factors, the starting time of dummy rib deflection and the contact average velocity, the internal energy and time-velocity response table were introduced. It is shown that the results of the new response tables have the similar characteristics to those of the Injury response table. It is suggested that the internal energy and time-velocity response table should be utilized to minimize injuries.

Optimization of the Automotive Side Door Impact Beam Considering Static Requirement (정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계)

  • 송세일;차익래;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

On the Dynamic Response of a Beam with Variable Section subject to Impact Load (충격하중(衝擊荷重)을 받는 변단면(變斷面)보의 동적(動的) 응답해석(應答解析))

  • K.S.,Choi;C.D.,Jang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 1984
  • As the first step to the dynamic stress analysis of structures, transient responses of a Timoshenko beam with variable section subject to impact load are analyzed. According to the various characteristics of impact load, time histories of the transient response of Timoshenko beam with general boundary conditions are obtained and compared with those of one degree of freedom system. Numerical solutions of the governing equations of motion are calculated by adopting the equivalent lumped-mass system and the finite difference method. It is found that the dynamic responses of Timshenko beam depend on the effect of concentration and location of impact load. As a result, increasing tendency of fluctuation in dynamic response, especially in bending moment, is found according to the increase of load concentration factor in time and space.

  • PDF

An analysis of the Child Head Impact Injury with Finite Element Model (유한 요소 모형을 이용한 어린이의 머리 충격 부상에 관한 연구)

  • 김영은;남대훈;왕규창
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.169-179
    • /
    • 1997
  • The dynamic response of the human brain to direct impact was studied by three-dimensional finite element modeling. The model includes a layered shell closely representing the cranial bones with the interior contents occupied by an incompressible continuum to simulate the brain. Falx and tentorium modeled with 4 node membrane element were also incorporated. The computed pressure-time histories at 4 locations within the brain element compared quite favorably with previously published experimental data from cadaver experiments. Therefore, the purpose of this study was to determine the effects of the impact direction on the dynamic response of the brain in children. A parametric study was subsequently conducted to identify the model response when the age and impact site were varied.

  • PDF

Calculation of Impact Forces of an Arbitrary Force Applied Vibro-Impact system (임의 하중이 작용하는 진동-충격시스템에서의 충격력계산)

  • 이창희
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.679-685
    • /
    • 2000
  • A procedure is presented for calculating the magnitude and shape of impact pulses in a vibro-impact system when an arbitrary input force is applied to a point in the system. The procedure utilizes the condition that the displacements of two contacting point in the primary and secondary system are the same during a contacting period. The displacements of those points are calculated numerically through the convolution integral which involve the impulse response functions and applied forces. The validity of the calculation procedure is demonstrated by using it to calculated the impact forces of a simple system where a theoretical solution is known and also of systems for which other researchers have published results. The agreement between the results derived by the numerical method and the theoretical and also some published results is good.

  • PDF

Numerical study on the impact response of SC walls under elevated temperatures

  • Lin Wang;Weiyi Zhao;Caiwei Liu;Qinghong Pang
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.345-352
    • /
    • 2023
  • A thermal-mechanical coupling finite element model of the steel-plate concrete composite (SC) wall is established, taking into account the strain rate effect and variation in mechanical and thermal properties under different temperatures. Verifications of the model against previous fire test and impact test results are carried out. The impact response of the SC wall under elevated temperatures is further investigated. The influences of the fire exposure time on the impact force and displacement histories are discussed. The results show that as the fire exposure time increases, the deflection increases and the impact resistance decreases. A formula is proposed to calculate the reduction of the allowable impact energy considering the fire exposure time.

Transient Response Analysis of a Comb Type Bridge Expansion Joint due to Travelling Wheel Impact (차륜주행충격에 의한 빗살형 교량 신축이음장치 구조물의 과도진동해석)

  • 최영휴;김현욱;안영덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.69-74
    • /
    • 1997
  • In this paper we derive relations which describe the geometry and kinematics of contact between the travelling wheel and stepped comb joint. From which we can obtain the impulse, impulsive force and its time interval due to travelling wheel impact which can not be taken from Carter's model or Newland and Cassidy's. The calculated transient responses of the comb joint structure to travelling wheel impact reveals that the proposed wheel contact model and Carter's give very similar results but Newland Cassidy's model make a quite different results from the others.

  • PDF

A Study on the Transient Response and Impact Coefficient Calculation of PCB Handler (PCB Handler의 과도응답해석 및 충격계수 산출 연구)

  • Lee, Byoung-Hwa;Kwon, Soon Ki;Koh, Man-Soo
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.223-229
    • /
    • 2017
  • Europe, the US and Japan have acquired test results on impact coefficient for a long time and applied it to equipment design to secure safety of structures. However, Korean enterprises use the impact factor held by advanced business to design equipment as it is difficult for them to obtain it through tests. In this paper, NX/NASTRAN, was used to perform static load analysis and impact load analysis of a PCB Handler, semiconductor test equipment, and the result was employed to study how to calculate the impact coefficient with the finite element analysis. The calculation method was applied to the JIS(Japanese Industrial Standard), and the impact coefficient of the PCB handler was calculated as 1.27 for the sudden start or stop. The impact coefficient generated by the analysis is expected to make a great contribution to the industry as it can be used to improve the equipment structure and develop on existing equipment in the future.

Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure (유한요소해석 기반 원전 기계구조물 충격-질량지표 개발)

  • Moon, Seongin;Kang, To;Han, Soonwoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.