• 제목/요약/키워드: impact failure

검색결과 957건 처리시간 0.031초

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

GF/PP 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Glass Fiber Polypropylene Composites)

  • 엄윤성
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.421-427
    • /
    • 1999
  • The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperatures range of the ambient temperature to $-50^{\circ}C$ The critical fracture energy increase as fiber volume fraction ratio increased The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up. Major failure mechanisms can be classfied such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

터파기 공사 사고가 공사에 미치는 경제적 영향 (The Economic Impact of Excavation Work Failure on a Construction Project)

  • 고광노;이강
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2007년도 정기학술발표대회 논문집
    • /
    • pp.643-646
    • /
    • 2007
  • 도심지 지가가 높아짐에 따라 건축물의 공간 활용도에 대한 기대치가 높아지게 되었고, 건축물은 더 크고, 더 깊고, 더 높게 지어지는 방향으로 나아가고 있다. 이에 따라, 공사의 첫 단계이자 전체 건물의 기초가 되는 지하 공사는 그 중요성이 날로 더해가고 있다. 최소한의 비용으로 최단기간에 터파기 공사를 완료해야 하는 도심지 공사의 특성상 공사 관계자들은 지하 공사를 계획, 설계, 시공, 설계하는 과정에서 심혈을 기울이고 있다. 그럼에도 불구하고 지하 공사 전번에 걸쳐 있는 불확실성과 위험 요소 때문에 공사 실패 사례가 발생하고 있다. 더욱이 이러한 사고가 어느 정도의 경제적 피해를 끼쳤는지에 대한 보고나 연구없이 사고 사례만 알려지기 때문에 지하 공사의 위험성에 대한 경각심이 부족한 것이 우리나라 건축의 현실이다. 이런 사고를 타산지석으로 삼아 터파기 공사 공법을 선정하고 지하 공사를 이행하는데 있어서 하나의 지침이 되기를 바라면서 지하 공사 실패 사례가 과연 어느 정도의 경제적 피해를 발생시키는지를 개산견적 기법을 도입하여 추정해 보았다.

  • PDF

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Steel단섬유보강 시멘트복합체의 내충격성능 (Impact Resistant Performance of Steel Short Fiber-reinforced Cement Based Composites)

  • 남정수;김홍섭;최경철;이상규;손민재;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.254-255
    • /
    • 2017
  • The aim of this study is to investigate the impact resistant performance of steel short fiber-reinforced cement based composites (SFRCCs) containing 1.0, 1.5, 2.0 and 3.0% volume fraction of steel short fibers subjected to high velocity impact of steel projectile (the diameter of 19.05mm and the mass of 28.13g). The gunpowder impact facility was used for impact tests, and the impact velocity was from about 350 to 700m/s. The specimens were damaged in various failure modes, which are penetration, scabbing, and perforation. Comparing with Plain specimen, SFRCCs have superior capacity on the scabbing limit, and slightly bulged in the back side under the impact velocity of 700m/s. In addition, the impact resistant performance of SFRCCs improved with increase of steel short fiber volume ratio. The fibers play an important role in controlling the local damage of SFRCCs.

  • PDF

35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship)

  • 김형진;이진정;고성위;김재동
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj;Cleary, Paul W.
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.933-961
    • /
    • 2015
  • Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.

Load carrying capacity of CFRP retrofitted broken concrete arch

  • Wang, Peng;Jiang, Meirong;Chen, Hailong;Jin, Fengnian;Zhou, Jiannan;Zheng, Qing;Fan, Hualin
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.187-194
    • /
    • 2017
  • To reuse a broken plain concrete (PC) arch, a retrofitting method was proposed to ensure excellent structural performances, in which carbon fiber reinforced polymers (CFRPs) were applied to repair and strengthen the damaged PC arch through bonding and wrapping techniques. Experiments were carried out to reveal the deformation and the load carrying capacity of the retrofitted composite arch. Based on the experiments, repairing and strengthening effects of the CFRP retrofitted broken arch were revealed. Simplified analysing model was suggested to predict the peak load of the CFRP retrofitted broken arch. According to the research, it is confirmed that absolutely broken PC arch can be completely repaired and reinforced, and even behaves more excellent than the intact PC arch when bonded together and strengthened with CFRP sheets. Using CFRP bonding/wrapping technique a novel efficient composite PC arch structure can be constructed, the comparison between rebar reinforced concrete (RC) arch and composite PC arch reveals that CFRP reinforcements can replace the function of steel bars in concrete arch.

불충분한 고장 데이터에 기초한 발전소의 신뢰도 산정기법에 관한 연구 (Reliability Analysis for Power Plants Based on Insufficient Failure Data)

  • 이승철;최동수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.401-406
    • /
    • 2003
  • Electric power industries in several countries are currently undergoing major changes, mainly represented by the privatizations of the power plants and distribution systems. Reliable operations of the power plants directly contribute to the revenue increases of the generation companies in such competitive environments. Strategic optimizations should be performed between the levels of the reliabilities to be maintained and the various preventive maintenance costs, which require the accurate estimations of the power plant reliabilities. However, accurate estimations of the power plant reliabilities are often limited by the lack of accurate power plant failure data. A power plant is not supposed to be failed that often. And if it fails, its impact upon the power system stability is quite substantial in most cases, setting aside the significant revenue losses and lowered company images. Reliability assessment is also important for Independent System Operators(ISO) or Market Operators to properly assess the level of needed compensations for the installed capacity based on the availability of the generation plants. In this paper, we present a power plant reliability estimation technique that can be applied when the failure data is insufficient. Median rank and Weibull distribution are used to accommodate such insufficiency. The Median rank is utilized to derive the cumulative failure probability for each ordered failure. The Weibull distribution is used because of its flexibility of accommodating several different distribution types based on the shape parameter values. The proposed method is applied to small size failure data and its application potential is demonstrated.

Successful vs. Failed Tech Start-ups in India: What Are the Distinctive Features?

  • Kalyanasundaram, Ganesaraman;Ramachandrula, Sitaram;Subrahmanya MH, Bala
    • Asian Journal of Innovation and Policy
    • /
    • 제9권3호
    • /
    • pp.308-338
    • /
    • 2020
  • The entrepreneurial journey is not short of challenges, and about 90% + tech start-ups experience failure (Startup Genome, 2019). The magnitude of the challenges varies across the tech start-up lifecycle stages, namely emergence, stability, and growth. This opens the research question, do the profiles of a start-up and its co-founder impact start-up success or failure across its lifecycle stages? This study aims to understand and identify the profiles of tech start-ups and their co-founders. We gathered primary data from 151 start-ups (Status: 101 failed and 50 successful ones), and they are across different lifecycle stages and represent six major start-up hubs in India. The chi-square test on status and start-up's lifecycle stage indicates a noticeable correlation, and they are not independent. The Kruskal Wallis test was used to distinguish statistically significant profile attributes. The parameters distinguishing success and failure are identified, and the need to deliver customer experience is emphasized by the start-up profile attributes: Product/service, high-tech nature of a start-up, investor fund availed, co-founder experience, and employee count. The importance of entrepreneurial experience is ascertained with entrepreneur profile attributes: Entrepreneurial expertise, the number of prior and current start-ups, their willingness to start again in the event of failure, and age of co-founder, which is a proxy to learning and experience. This study has implications for entrepreneurs, investors, and policymakers.