• Title/Summary/Keyword: immunoprecipitation

Search Result 302, Processing Time 0.031 seconds

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain (APP tail 1 (PAT1)과 kinesin light chains (KLCs)의 tetratricopeptide repeat (TPR) domain을 통한 결합)

  • Jang, Won Hee;Kim, Sang-Jin;Jeong, Young Joo;Jun, Hee Jae;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1608-1613
    • /
    • 2012
  • A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal (GAT1과 ubiquitin-specific protease Usp14의 결합)

  • Seog, Dae-Hyun;Kim, Sang-Jin;Joung, Young-Ju;Yea, Sung-Su;Park, Yeong-Hong;Kim, Moo-Seong;Moon, Il-Soo;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1005-1011
    • /
    • 2010
  • $\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.

Hepatitis C Virus Nonstructural 5A Protein (HCV-NS5A) Inhibits Hepatocyte Apoptosis through the NF-κb/miR-503/bcl-2 Pathway

  • Xie, Zhengyuan;Xiao, Zhihua;Wang, Fenfen
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • The nonstructural protein 5A (NS5A) encoded by the human hepatitis C virus (HCV) RNA genome is a multifunctional phosphoprotein. To analyse the influence of NS5A on apoptosis, we established an Hep-NS5A cell line (HepG2 cells that stably express NS5A) and induced apoptosis using tumour necrosis factor $(TNF)-{\alpha}$. We utilised the MTT assay to detect cell viability, real-time quantitative polymerase chain reaction and Western blot to analyse gene and protein expression, and a luciferase reporter gene experiment to investigate the targeted regulatory relationship. Chromatin immunoprecipitation was used to identify the combination of $NF-{\kappa}B$ and miR-503. We found that overexpression of NS5A inhibited $TNF-{\alpha}$-induced hepatocellular apoptosis via regulating miR-503 expression. The cell viability of the $TNF-{\alpha}$ induced Hep-mock cells was significantly less than the viability of the $TNF-{\alpha}$ induced Hep-NS5A cells, which demonstrates that NS5A inhibited $TNF-{\alpha}$-induced HepG2 cell apoptosis. Under $TNF-{\alpha}$ treatment, miR-503 expression was decreased and cell viability and B-cell lymphoma 2 (bcl-2) expression were increased in the Hep-NS5A cells. Moreover, the luciferase reporter gene experiment verified that bcl-2 was a direct target of miR-503, NS5A inhibited $TNF{\alpha}$-induced $NF-{\kappa}B$ activation and $NF-{\kappa}B$ regulated miR-503 transcription by combining with the miR-503 promoter. After the Hep-NS5A cells were transfected with miR-503 mimics, the data indicated that the mimics could reverse $TNF-{\alpha}$-induced cell apoptosis and blc-2 expression. Collectively, our findings suggest a possible molecular mechanism that may contribute to HCV treatment in which NS5A inhibits $NF-{\kappa}B$ activation to decrease miR-503 expression and increase bcl-2 expression, which leads to a decrease in hepatocellular apoptosis.

Helicobacter pylori Chaperone-Like Protein CagT Plays an Essential Role in the Translocation of CagA into Host Cells

  • Ding, Honglei;Zeng, Hao;Huang, Linping;Dong, Yandong;Duan, Yijun;Mao, Xuhu;Guo, Gang;Zou, Quanming
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1343-1349
    • /
    • 2012
  • Most of the Helicobacter pylori strains containing the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI is composed of 27 proteins, and some of the components are required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8); however, the exact function of most of the components remains unknown or poorly characterized. In this study, we demonstrated that CagT (HP0532), which is an essential structural component of the cag PAI apparatus, plays an important role in the translocation of CagA into host epithelial cells. In addition to being located on the bacterial surface, CagT is also partially localized in the inner membrane, where it acts as a chaperone-like protein and promotes CagA translocation. However, CagT secretion was not detected by immunoprecipitation analysis of cell culture supernatants. Meanwhile, CagT was related to the introduction of IL-8 of the host cell. These results suggest that CagT is expressed on both the inner and outer bacterial membranes, where it serves as a unique type IV secretion system component that is involved in CagA secretion and cag PAI apparatus assembly.

The agonistic action of URO-K10 on Kv7.4 and 7.5 channels is attenuated by co-expression of KCNE4 ancillary subunit

  • Lee, Jung Eun;Park, Christine Haewon;Kang, Hana;Ko, Juyeon;Cho, Suhan;Woo, JooHan;Chae, Mee Ree;Lee, Sung Won;Kim, Sung Joon;Kim, Jinsung;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.503-516
    • /
    • 2020
  • KCNQ family constitutes slowly-activating potassium channels among voltage-gated potassium channel superfamily. Recent studies suggested that KCNQ4 and 5 channels are abundantly expressed in smooth muscle cells, especially in lower urinary tract including corpus cavernosum and that both channels can exert membrane stabilizing effect in the tissues. In this article, we examined the electrophysiological characteristics of overexpressed KCNQ4, 5 channels in HEK293 cells with recently developed KCNQ-specific agonist. With submicromolar EC50, the drug not only increased the open probability of KCNQ4 channel but also increased slope conductance of the channel. The overall effect of the drug in whole-cell configuration was to increase maximal whole-cell conductance, to prolongate the activation process, and left-shift of the activation curve. The agonistic action of the drug, however, was highly attenuated by the co-expression of one of the β ancillary subunits of KCNQ family, KCNE4. Strong in vitro interactions between KCNQ4, 5 and KCNE4 were found through Foster Resonance Energy Transfer and co-immunoprecipitation. Although the expression levels of both KCNQ4 and KCNE4 are high in mesenteric arterial smooth muscle cells, we found that 1 μM of the agonist was sufficient to almost completely relax phenylephrine-induced contraction of the muscle strip. Significant expression of KCNQ4 and KCNE4 in corpus cavernosum together with high tonic contractility of the tissue grants highly promising relaxational effect of the KCNQ-specific agonist in the tissue.

ErbB2 kinase domain is required for ErbB2 association with β-catenin (ErbB2의 kinase 영역이 β-catenin과 ErbB2의 결합에 필요하다)

  • Ha, Nam-Chul;Xu, Wanping;Neckers, Len;Jung, Yun-Jin
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.356-361
    • /
    • 2007
  • To investigate the region of ErbB2 for the $ErbB2-{\beta}-catenin$ interaction, a proteasome $resistant-{\beta}-catenin$ and various ErbB2 constructs were transfected in COS7 cells. ErbB2 proteins were immunoprecipitated, and coimmunoprecipitated ${\beta}-catenin$ was examined by Western blotting. ${\beta}-catenin$ coimmunoprecipitated with full length ErbB2. Of the truncated ErbB2 proteins DT (1-1123), DHC (1-1031) and DK (1-750), the ErbB2 constructs containing the kinase domain, DT and DHC, precipitated together with ${\beta}-catenin$ but DK containing no kinase domain did not. To further test the requirement of the kinase domain for ${\beta}-catenin-ErbB2$ interaction, the presence of ${\beta}-catenin$ in the immunocomplex was examined following transfection with an ErbB2 mutant (${\triangle}750-971$) whose kinase domain is internally deleted and subsequent immunoprecipitation of the ErbB2 mutant. ${\beta}-catenin$ was not detected in the immunocomplex. These results suggest that the ErbB2 kinase domain comprises a potential site for ${\beta}-catenin$ binding to the receptor tyrosine kinase.

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase

  • Ali, Akhtar;Kim, Min Jun;Kim, Min Young;Lee, Han Ju;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.274-283
    • /
    • 2018
  • Hyper-O-GlcNAcylation is a general feature of cancer which contributes to various cancer phenotypes, including cell proliferation and cell growth. Quercetin, a naturally occurring dietary flavonoid, has been reported to reduce the proliferation and growth of cancer. Several reports of the anticancer effect of quercetin have been published, but there is no study regarding its effect on O-GlcNAcylation. The aim of this study was to investigate the anticancer effect of quercetin on HeLa cells and compare this with its effect on HaCaT cells. Cell viability and cell death were determined by MTT and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling assays. O-GlcNAcylation of AMP-activated protein kinase (AMPK) was examined by succinylated wheat germ agglutinin pulldown and immunoprecipitation. Immunofluorescence staining was used to detect the immunoreactivitiy of O-linked N-acetylglucosamine transferase (OGT) and sterol regulatory element binding protein 1 (SREBP-1). Quercetin decreased cell proliferation and induced cell death, but its effect on HaCaT cells was lower than that on HeLa cells. O-GlcNAcylation level was higher in HeLa cells than in HaCaT cells. Quercetin decreased the expression of global O-GlcNAcylation and increased AMPK activation by reducing the O-GlcNAcylation of AMPK. AMPK activation due to reduced O-GlcNAcylation of AMPK was confirmed by treatment with 6-diazo-5-oxo-L-norleucine. Our results also demonstrated that quercetin regulated SREBP-1 and its transcriptional targets. Furthermore, immunofluorescence staining showed that quercetin treatment decreased the immunoreactivities of OGT and SREBP-1 in HeLa cells. Our findings demonstrate that quercetin exhibited its anticancer effect by decreasing the O-GlcNAcylation of AMPK. Further studies are needed to explore how quercetin regulates O-GlcNAcylation in cancer.

Concurrent Innate Immunity Activation and Anti-inflammation effects of Dialyzed Coffee Extract in RAW 264.7 Cells, Murine Macrophage Lineage (RAW 264.7 세포에서 투석시킨 커피 추출액의 선천면역활성화와 항염증의 동시발생)

  • Yoon, Cheol Soo;Lee, Suk Keun
    • The Korean Journal of Oral and Maxillofacial Pathology
    • /
    • v.41 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • Coffee (Coffea spp.) is one of the most important agricultural commodities, being widely consumed in the world. Various beneficial health effects of coffee have been extensively investigated, but data on habitual coffee consumption and its bio-physiological effect have not been clearly explained as well as it is not proved the cause and effect between drinking coffee and its bio-physiological reactions. We made the dialyzed coffee extract (DCE), which is absorbable through gastrointestinal tract, in order to elucidate the cellular effect of whole small coffee molecules. RAW 264.7 cells, a murine macrophage lineage, were directly treated with DCE, i.e., DCE-2.5 (equivalent to 2.5 cups of coffee a day), DCE-5, and DCE-10, for 12 hours, and their protein extracts were examined by immunoprecipitation high performance liquid chromatography (IP-HPLC). RAW 264.7 cells differently expressed the inflammation-related proteins depending on the doses of DCE. RAW 264.7 cells treated with DCE showed marked increase of cathepsin C, cathepsin G, CD20, CD28, CD31, CD68, indicating the activation of innate immunity. Particularly, the macrophage biomarkers, cathepsin G, cathepsin C, CD31, and CD68 were markedly increased after DCE-5 and DCE-10 treatments, and the lymphocyte biomarkers, CD20 and CD28 were consistently increased and became marked after DCE-10 treatment. On the other hand, RAW 264.7 cells treated with DCE showed consistent increase of IL-10, an anti-inflammatory factor, but gradual decreases of different pro-inflammatory proteins including $TNF{\alpha}$, COX-2, lysozyme, MMP-2, and MMP-3. In particular, the cellular signaling of inflammation was gradually mitigated by the reduction of $TNF{\alpha}$, COX-2, IL-12, and M-CSF, and also the matrix inflammatory reaction was reduced by marked deceases of MMP-2, MMP-3, and lysozyme. These anti-inflammatory expressions were consistently found until DCE-10 treatment. Therefore, it is presumed that DCE may have dynamic effects of innate immunity activation and pro-inflammation suppression on RAW264.7 cells simultaneously. These effects were consistently found in the highest dose of coffee, DCE-10 (equivalent to 10 cups of coffee a day in man), that might imply the small coffee molecules were accumulated in RAW 264.7 cells after DCE-10 treatment and produce synergistic cytokine effects for innate immunity activation and anti-inflammatory reaction concurrently.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.