Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.7.1005

Interaction of GAT1 with Ubiquitin-Specific Protease Usp14 in Synaptic Terminal  

Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
Kim, Sang-Jin (Department of Neurology, College of Medicine, Inje University)
Joung, Young-Ju (Department of Biochemistry, College of Medicine, Inje University)
Yea, Sung-Su (Department of Biochemistry, College of Medicine, Inje University)
Park, Yeong-Hong (Department of Biochemistry, College of Medicine, Inje University)
Kim, Moo-Seong (Department of Neurosurgery, College of Medicine, Inje University)
Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University)
Jang, Won-Hee (Department of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.20, no.7, 2010 , pp. 1005-1011 More about this Journal
Abstract
$\gamma$-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. GABA transporters (GATs) control extracellular GABA levels by reuptake of released GABA from the synaptic cleft. However, how GATs are regulated has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the carboxyl (C)-terminal region of GAT1, the major isoform in the brain and find a specific interaction with the ubiquitin-specific protease 14 (Usp14), a deubiquitinating enzyme. Usp14 protein bound to the tail region of GAT1 and GAT2 but not to other GAT members in the yeast two-hybrid assay. The C-terminal region of Usp14 is essential for interaction with GAT1. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT1 specifically co-immunoprecipitated Usp14 from mouse brain extracts. These results suggest that Usp14 may regulate the number of GAT1 at the cell surface.
Keywords
$\gamma$-aminobutyric acid; $\gamma$-aminobutyric acid transporter; ubiquitin; protein-protein interaction; deubiquitinating enzyme;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wilson, S. M., B. Bhattacharyya, R. A. Rachel, V. Coppola, L. Tessarollo, D. B. Householder, C. F. Fletcher, R. J. Miller, N. G. Copeland, and N. A. Jenkins. 2002. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420-425.   DOI   ScienceOn
2 Yi, J. J. and M. D. Ehlers. 2005. Ubiquitin and protein turnover in synapse function. Neuron 47, 629-632.   DOI
3 Sato, K., H. Betz, and P. Schloss. 1995. The recombinant GABA transporter GAT1 is downregulated upon activation of protein kinase C. FEBS Lett. 375, 99-102.   DOI
4 Setou, M., T. Nakagawa, D. H. Seog, and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802.   DOI
5 Sloan, J. and S. Mager. 1999. Cloning and functional expression of a human Na(+) and Cl(−)-dependent neutral and cationic amino acid transporter B(0+). J. Biol. Chem. 274, 23740-23745.   DOI
6 Soboleva, T. A. and R. T. Baker. 2004. Deubiquitinating enzymes: their functions and substrate specificity. Curr. Protein Pept. Sci. 5, 191-200.   DOI
7 Speese, S. D., N. Trotta, C. K. Rodesch, B. Aravamudan, and K. Broadie. 2003. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. Biol. 13, 899-910.   DOI
8 Takeda, S., H. Yamazaki, D. H. Seog, Y. Kanai, S. Terada, and N. Hirokawa. 2000. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building. J. Cell Biol. 148, 1255-1265.   DOI
9 Terrell, J., S. Shih, R. Dunn, and L. Hicke. 1998. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193-202.   DOI
10 Torres, G. E., W. D. Yao, A. R. Mohn, H. Quan, K. M. Kim, A. I. Levey, J. Staudinger, and M. G. Caron. 2001. Functional interaction between monoamine plasma membrane transporters and synaptic PDZ domain-containing protein PICK1. Neuron 30, 121-134.   DOI
11 Minelli, A., N. Brecha, C. Karschin, S. DeBias, and F. Conti. 1996. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci. 15, 7734-7746.
12 Quick, M., J. Corey, N. Davidson, and H. Lester. 1997. Second messengers, trafficking-related proteins, and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J. Neurosci. 17, 2967-2979.
13 Mukherjee, S., R. N. Ghosh, and F. R. Maxfield. 1997. Endocytosis. Physiol. Rev. 77, 759-803.
14 Nelson, N. 1998. The family of Na+/Cl− neurotransmitter transporters. J. Neurochem. 71, 1785-1803.   DOI
15 Park, M., E. C. Penick, J. G. Edwards, J. A. Kauer, and M. D. Ehlers. 2004. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972-1975.   DOI   ScienceOn
16 Radian, R., O. Ottersen, J. Storm-Mathisen, M. Castel, and B. Kanner. 1990. Immunocytochemical localization of the GABA transporter in rat brain. J. Neurosci. 10, 1319-1330.
17 Saliba, R. S., G. Michels, T. C. Jacob, M. N. Pangalos, and S. J. Moss. 2007. Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J. Neurosci. 27, 13341-13351.   DOI
18 Liu, Q. R., S. Mandiyan, H. Nelson, and N. Nelson. 1992. A family of genes encoding neurotransmitter transporters. Proc. Natl. Acad. Sci. USA 89, 6639-6643.   DOI
19 Mager, S., N. Kleinberger-Doron, G. I. Keshet, N. Davidson, B. I. Kanner, and H. A. Lester. 1996. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16, 5405-5414.
20 Engel, D., D. Schmitz, T. Gloveli, C. Frahm, U. Heinemann, and A. Draguhn. 1998. Laminar difference in GABA uptake and GAT-1 expression in rat CA1. J. Physiol. 512, 643-649.   DOI
21 Isaacson, J., J. Solis, and R. Nicoll. 1993. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165-175.   DOI
22 Haase, J., A. M. Killian, F. Magnani, and C. Williams. 2001. Regulation of the serotonin transporter by interacting proteins. Biochem. Soc. Trans. 29, 722-728.   DOI
23 Hicke, L. and H. Riezman. 1996. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277-287.   DOI
24 Hu, M., P. Li, L. Song, P. D. Jeffrey, T. A. Chenova, K. D. Wilkinson, R. E. Cohen, and Y. Shi. 2005. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747-3756.   DOI
25 Kwong, W., W. Chan, K. Lee, M. Fan, and D. Yew. 2000. Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. Histochem. J. 32, 521-534.   DOI
26 Lappe-Siefke, C., S. Loebrich, W. Hevers, O. B. Waidmann, M. Schweizer, S. Fehr, J. M. Fritschy, I. Dikic, J. Eilers, S. M. Wilson, and M. Kneussel. 2009. The ataxia (axJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 9, e1000631.
27 Law, R., A. Stafford, and M. Quick. 2000. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J. Biol. Chem. 275, 23986-23991.   DOI
28 Lin, C. I., I. Orlov, A. M. Ruggiero, M. Dykes-Hoberg, A. Lee, M. Jackson, and J. D. Rothstein. 2001. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410, 84-88.   DOI
29 Chung, C. H. and S. H. Baek. 1999. Deubiquitinating enzymes: their diversity and emerging roles. Biochem. Biophys. Res. Commun. 266, 633-640.   DOI
30 Chiu, C. S., S. Brickley, K. Jensen, A. Southwell, S. McKinney, S. Cull-Candy, I. Mody, and H. A. Laster. 2005. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234-3245.   DOI
31 Clark, J. and S. Amara. 1993. Amino acid neurotransmitter transporters: structure, function, and molecular diversity. BioEssays. 15, 323-332.   DOI
32 Corey, J., N. Davidson, H. Lester, N. Brecha, and M. Quick. 1994. Protein kinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J. Biol. Chem. 269, 14759-14767.
33 Crimmins, S., Y. Jin, C. Wheeler, A. K. Huffman, C. Chapman, L. E. Dobrunz, A. Levey, K. A. Roth, J. A. Wilson, and S. M. Wilson. 2006. Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. J. Neurosci. 26, 11423-11431.   DOI   ScienceOn
34 Deken, S., M. Beckman, L. Boos, and M. Quick. 2000. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat. Neurosci. 3, 998-1003.   DOI
35 DiAntonio, A., A. P. Haghighi, S. L. Portman, J. D. Lee, A. M. Amaranto, and C. S. Goodman. 2001. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449-452.   DOI
36 Ehlers, M. D. 2003. Ubiquitin and synaptic dysfunction: ataxic mice highlight new common themes in neurological disease. Trends Neurosci. 26, 4-7.   DOI
37 Brown, A., D. Grimm, T. Muth, L. Dunbar, S. Maday, X. Lou, M. Farquar, and M. Caplan. 2001. GIPC associates with GAT2 and may regulate its targeting by a novel mechanism. Mol. Biol. Cell 12, 345a.
38 Bennett, E. R., H. Su, and B. I. Kanner. 2000. Mutation of arginine 44 of GAT-1, a ($Na^+$ + $Cl^-$)-coupled ${\gamma}-aminobutyric$ acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275, 34106-34113.   DOI
39 Blakely, R. D. and A. L. Bauman. 2000. Biogenic amine transporters: regulation in flux. Curr. Opin. Neurobiol. 10, 328-336.   DOI
40 Borodovsky, A., B. M. Kessler, R. Casagrande, H. S. Overkleeft, K. D. Wilkinson, and H. L. Ploegh. 2001. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187-5196.   DOI
41 Buttner, C., S. Sadtler, A. Leyendecker, B. Laube, N. Griffon,H. Betz, and G. Schmalzing. 2001. Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors. J. Biol. Chem. 276, 42978-42985.   DOI
42 Chiu, C., K. Jensen, I. Sokolova, D. Wang, M. Li, P. Deshpande, N. Davidson, I. Mody, M. Quick, S. Quake, and H. Lester. 2002. Number, density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J. Neurosci. 22, 10251-10266.
43 Beckman, M., E. Bernstein, and M. Quick. 1998. Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J. Neurosci. 18, 6103-6112.
44 Alves-Rodrigues, A., L. Gregori, and M. E. Figueiredo-Pereira. 1998. Ubiquitin, cellular inclusions, and their role in neurodegeneration. Trends Neurosci. 21, 516-520.   DOI
45 Alwan, H. A., E. J. van Zoelen, and J. E. van Leeuwen. 2003. Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J. Biol. Chem. 278, 35781-35790.   DOI
46 Augood, S., A. Herbison, and P. Emson. 1995. Localization of GAT-1 GABA transporter mRNA in rat striatum: cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA. J. Neurosci. 15, 865-874.