Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.12.1608

APP Tail 1 (PAT1) Interacts with Kinesin Light Chains (KLCs) through the Tetratricopeptide Repeat (TPR) Domain  

Jang, Won Hee (Department of Biochemistry, College of Medicine, Inje University)
Kim, Sang-Jin (Department of Neurology, College of Medicine, Inje University)
Jeong, Young Joo (Department of Biochemistry, College of Medicine, Inje University)
Jun, Hee Jae (Department of Thoracic & Cardiovascular Surgery, College of Medicine, Inje University)
Moon, Il Soo (Department of Anatomy & Dongguk Medical Institute, College of Medicine, Dongguk University)
Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.22, no.12, 2012 , pp. 1608-1613 More about this Journal
Abstract
A conventional kinesin, KIF5/Kinesin-I, transports various cargoes along the microtubule through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) interact with many different cargoes using their tetratricopeptide repeat (TPR) domain, but the mechanism underlying recognition and binding of a specific cargo has not yet been completely elucidated. We used the yeast two-hybrid assay to identify proteins that interact with the TPR domain of KLC1. We found an interaction between the TPR domain of KLC1 and an amyloid precursor protein (APP)-binding protein PAT1 (protein interacting with APP tail 1). The yeast two-hybrid assay demonstrated that the TPR domain-containing region of KLC1 mediated binding to the C-terminal tail region of PAT1. PAT1 also bound to KLC2 but not to kinesin heavy chains (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. These protein-protein interactions were also observed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti-PAT1 antibody as well as anti-APP anti-body co-immunoprecipitated KLC and KHCs associated with PAT1 from mouse brain extracts. These results suggest that PAT1 could mediate interactions between Kinesin-I and APP containing vesicles.
Keywords
Microtubule motors; Kinesin-I; PAT1; APP; adaptor proteins; protein-protein interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1998. Current Protocols in Molecular Biology. John Wiley & Sons.
2 Blatch, G. L. and Lässle, M. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21, 932-939.   DOI
3 Bowman, A. B., Kamal, A., Ritchings, B. W., Philp, A. V., McGrail, M., Gindhart, J. G. and Goldstein, L. S. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594.   DOI
4 Bracale, A., Cesca, F., Neubrand, V. E., Newsome, T. P., Way, M. and Schiavo, G. 2007. Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation. Mol. Biol. Cell 18, 142-152.
5 Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75.   DOI
6 Hirokawa, N. and Takemura, R. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214.   DOI
7 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.   DOI   ScienceOn
8 Ichimura. T., Wakamiya-Tsuruta, A., Itagaki, C., Taoka, M., Hayano, T., Natsume, T. and Isobe, T. 2002. Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41, 5566-5572.   DOI
9 Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H. and Goldstein, L. S. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449-459.   DOI
10 Kamm, C., Boston, H., Hewett, J., Wilbur, J., Corey, D. P., Hanson, P. I., Ramesh, V. and Breakefield, X. O. 2004. The early onset dystonia protein torsinA interacts with kinesin light chain 1. J. Biol. Chem. 279, 19882-19892.   DOI
11 Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525.   DOI   ScienceOn
12 Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.
13 Kim, S. J., Lee, C. H., Park, H. Y., Yea, S. S., Jang, W. H., Lee, S. K., Park, Y. H., Cha, O. S., Moon, I. S. and Seog, D. H. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. J. Life Sci. 17, 889-895.   과학기술학회마을   DOI
14 Konecna, A., Frischknecht, R., Kinter, J., Ludwig, A., Steuble, M., Meskenaite, V., Indermühle, M., Engel, M., Cen, C., Mateos, J. M., Streit, P. and Sonderegger, P. 2006. Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol. Biol. Cell 17, 3651-3663.   DOI
15 McGuire, J. R., Rong, J., Li, S. H. and Li, X. J. 2006. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281, 3552-3559.   DOI
16 Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625.   DOI
17 Rahman, A., Friedman, D. S. and Goldstein, L. S. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403.   DOI
18 Zheng, P., Eastman, J., VandePol, S. and Pimplikar, S. W. 1998. PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein. Proc. Natl. Acad. Sci. USA 95, 14745-14750.   DOI
19 Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87.   DOI   ScienceOn
20 Verhey, K. J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B. J., Rapoport, T. A. and Margolis, B. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970.   DOI   ScienceOn
21 Zhu, H., Lee, H. Y., Tong, Y., Hong, B. S., Kim, K. P., Shen, Y., Lim, K. J., Mackenzie, F., Tempel, W. and Park, H. W. 2012. Crystal structures of the tetratricopeptide repeat domains of kinesin light chains: insight into cargo recognition mechanisms. PLoS One 7, e33943.   DOI