• Title/Summary/Keyword: immunity gene

Search Result 278, Processing Time 0.025 seconds

Associations of Polymorphisms in the Mx1 Gene with Immunity Traits in Large WhitexMeishan F2 Offspring

  • Li, X.L.;He, W.L.;Deng, C.Y.;Xiong, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1651-1654
    • /
    • 2007
  • The mouse myxovirus resistance protein 1 (Mx1) is known to be sufficient to confer resistance to influenza viruses, and the gene encoding Mx1 is, therefore, an interesting candidate gene for disease resistance in farm animals. The porcine Mx1 gene has already been identified and characterized based on its homology with mouse Mx1; the full-length coding region of the pig Mx1 gene spans 2,545 bp (M65087) and is organized into 17 exons compared with the human ortholog mRNA. In this study, the exons 9, 10 and 11 and introns 6 and 9 of the porcine Mx1 gene were cloned and sequenced. Two SNPs were identified in exons 9, 10 and 11 but none of the SNPs led to an amino acid exchange, and the other eleven variants were detected in introns 6 and 9, respectively. Differences in allele frequency between Meishan and other pig breeds were observed within intron 6, of which an $A{\rightarrow}G$ substitution at position 371 was detected as an SnaBI PCR-RFLP. The association analysis using the Large White${\times}$Meishan $F_2$ offspring suggested that the Mx1 genotype was associated with variation in several immunity traits that are of interest in pig breeding. However, further investigations in more populations are needed to confirm the above result.

Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum

  • Lee, Sang-Hyun;Kim, Hyun Ju;Shin, Yong-An;Kim, Kyoung Heon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.725-729
    • /
    • 2016
  • A novel genome-engineering tool in Clostridium acetobutylicum was developed based on single-crossover homologous recombination. A small-sized non-replicable plasmid, pHKO1, was designed for efficient integration into the C. acetobutylicum genome. The integrated pHKO1 plasmid backbone, which included an antibiotic resistance gene, can be excised in vivo by Flp recombinase, leaving a single flippase recognition target sequence in the middle of the targeted gene. Since the pSHL-FLP plasmid, the carrier of the Flp recombinase gene, employed the segregationally unstable pAMβ1 replicon, the plasmid was rapidly cured from the mutant C. acetobutylicum. Consequently, our method makes it easier to engineer C. acetobutylicum.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Isolation of Two cDNAs Encoding a Putative Peptidohlycan Recognition Protein Gene from the Domestic Silkworm, Bombyx mori

  • Kim, Sang-Hyun;Lee, Heui-Sam;Kim, Jin-Won;Lee, Young-Sin;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • Peptidohlycan recognition protein (PGRP) is one of the pattern recognition proteins in innate immunity of insect. We isolated differentially expressed two cDNAa, BTL-LPI and BTL-LP2, in the fat body of Bombyx mori larvae injected with bacteria by subtractive hybridization method. These two clones showed amino acid sequence divergence of 30.4%. In the comparison with other insect PGRP genes, BTL-LP2 showed 48.8% and 45.2% of sequence homology to the known PGRP genes of Bombyx mori and Tricoplusia ni, respectively, and BTL-LP2 was 31.8% and 30.9% , respectively. Phylogenetic analysis showed relatively close relationship of the BTL-LP2 to the known insect PGRP, unlike BTL-LPI, which was equidistant both to insect and mammals, suggesting a divergent relationships of the two newly cloned B. mori PGRP genes. Northern blot analyses confirmed an induction of the expression of BTL-LP2 by the bacterial infection in the Int body of B. mori, suggesting the involvement of the gene in the insect immunity.

Different Way of LMP/TAP/MHC Gene Clustering in Vertebrates,. Viviparity and Anti-tumor Immunity Failure

  • Bubanovic, Ivan;Najman, Stevo
    • Animal cells and systems
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Class I and class II MHC genes have been identified in most of the jawed vertebrate taxa. In all investigated bony fish species, unlike mammals, the classical class I and class II MHC genes are not linked and even are found on different chromosomes. Linking and clustering of the class I and class II MHC genes is not the only phenomenon clearly detected in the evolution of immune system from cartilaginous to mammals. In all non-mammalian classes the LMP/TAP genes are highly conserved within class I genes region, while these genes are conserved within class II genes region only in mammals. Today we know that LMP/TAP genes in mammals have a crucial role in peptide processing for presentation within class I molecules, as well as in anti-tumor immunity. For these reasons, differences in clustering of LMP/TAP/MHC genes can be responsible for the differences in mechanisms and efficacy of anti-tumor immunity in non-mammalian vertebrates compared to same mechanisms in mammals. Also, the differences in cytokine network and anti-tumor antigens presentation within classes of vertebrates can be explained by toe peculiarity of LMP/TAP/MHC gene clustering.

Immunity Responses of the Spatholubus Suberectus Dunn to the Synovial Cells Isolated from Patients with Rheumatoid Arthritis (류마토이드 관절염 환자 골막세포에 대한 계혈등의 면역반응)

  • Seo Hae Gyoung;Oh Min Suck;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.780-786
    • /
    • 2003
  • This study was carried out to know the immunity responses of the Spatholubus suberectus Dunn(hereinafter referred to STSD) to the synovial cells isolated from patients with rheumatoid arthritis. Various experiments were performed in vitro to analyse the immunity effects of STSD. Gene expression and production of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, iNOS and COX-2 were determined by RT-PCR and ELISA kit. And also the binding activity of NF-kB and AP-1 were measured by Electromobility shift assay (EMSA) and the production of ROS was measured by flow cytometry. The results were obtained as follows 1. The gene expression and production of pro-inflammatory cytokines IL-1β, IL-6, TNF-α were reduced significantly. 2. The gene expression of iNOS and COX-2 were reduced. 3. The binding activity of NF-kB and AP-1 were inhibited. 4. The production of ROS in human synovial cells was reduced significantly. Comparison of the results for this study showed that STSD had immunomodulatory effects of suppressing or enhancing. So we expect that STSD should be used as a effective drugs for not only rheumatoid arthritis but also another auto-immune disease. Therefore we have to survey continuously in looking for the effective substance and mechanism in the future.

Protective immunity induced by recombinant outer membrane protein H of pasteurella multocida (A:3) of fowl cholera in mice (파스튜렐라(A : 3) 균주의 재조합 외막단백질 H에 의한 가금 콜레라 감염 생쥐의 면역성 검정)

  • Kim, Younghwan;Yang, Joo-Sung;Kwon, Moosik
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Pasteurella multocida is a terrible veterinary pathogen that causes widespread infections in husbandry. To induce homologous and/or heterologous immunity against the infections, outer membrane protein Hs (OmpH) in the envelope of different strains of P. multocida are thought to be attractive vaccine candidates. Previously we cloned and characterized a gene for OmpH from pathogenic P. multocida (A : 3) (In Press, Korean J. Microbiol. Biotechnol. 2005, 33, December). The gene is composed of 1,047 nucleotides (nt) coding 348 amino acids (aa) with signal peptide of 20 aa. The truncated ompH, a gene without nt coding for the signal peptide, was generated using pRSET A to name "pRSET A/OmpH-F2". This truncated ompH was well expressed in Escherichia coli BL21 (DE3). Truncated OmpH was purified for induction of immunity against live pathogen of fowl cholera (P. multocida A : 3) in mice. Some $50{\mu}g$ of the purified polypeptide was intraperitoneally injected into mice two times with 10 day interval. Lethal dose ($25{\mu}l$) of live P. multocida A : 3 was determined by directly injecting the pathogen into wild mice (n = 25). To demonstrate the vaccine candidate of the truncated OmpH, the live pathogen ($25{\mu}l$) was challenged with the OmpH-immunized mouse group as well as positive & negative controls (n = 80). The results show that the truncated OmpH can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (A : 3).

Very Early-Onset Inflammatory Bowel Disease: A Challenging Field for Pediatric Gastroenterologists

  • Arai, Katsuhiro
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.5
    • /
    • pp.411-422
    • /
    • 2020
  • With the increasing number of children with inflammatory bowel disease (IBD), very early-onset IBD (VEO-IBD), defined as IBD that is diagnosed or that develops before 6 years of age, has become a field of innovation among pediatric gastroenterologists. Advances in genetic testing have enabled the diagnosis of IBD caused by gene mutations, also known as monogenic or Mendelian disorder-associated IBD (MD-IBD), with approximately 60 causative genes reported to date. The diagnosis of VEO-IBD requires endoscopic and histological evaluations. However, satisfactory small bowel imaging studies may not be feasible in this small population. Both genetic and immunological approaches are necessary for the diagnosis of MD-IBD, which can differ among countries according to the available resources. As a result of the use of targeted gene panels covered by the national health insurance and the nationwide research project investigating inborn errors of immunity, an efficient approach for the diagnosis of MD-IBD has been developed in Japan. Proper management of VEO-IBD by pediatric gastroenterologists constitutes a challenge. Some MD-IBDs can be curable by allogenic hematopoietic stem cell transplantation. With an understanding of the affected gene functions, targeted therapies are being developed. Social and psychological support systems for both children and their families should also be provided to improve their quality of life. Multidisciplinary team care would contribute to early diagnosis, proper therapeutic interventions, and improved quality of life in patients and their families.

Construction and Characterization of Recombinant Poliovirus that Delivers T-cell epitope (T-cell Epitope을 운반할 수 있는 재조합소아마비바이러스 벡터의 제조 및 특성연구)

  • Cho, Seong-Pil;Lee, Bum-Young;Chung, Soo-Il;Min, Mi-Kyung
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.139-146
    • /
    • 1998
  • Recombinant polioviruses have been developed by many research groups for use as vaccine vector because poliovirus induces mucosal immunity as well as humoral immunity through oral uptake. We assessed the potential use of poliovirus as a T-cell epitope carrier. Recombinant poliovirus V129 5L was constructed to have a substituted T-helper epitope from the core protein of Hepatitis B virus at neutralization antigenic site 1 on its VP1 capsid protein. The recombinant virus replicated less efficiently than type 1 poliovirus Mahoney strain. The V129 5L formed a little smaller plaques than the Mahoney strain and showed some 1.25 log unit lower titer at the peak in the one-step growth kinetics though it had similar growth profile to that of the Mahoney strain. Since V129 5L recombinant virus was genetically stable even after 24 successive passages in HeLa cells, the antigenic site 1 on VP1 capsid protein was confirmed for its ability of carrying T cell epitope. The genetic stability of V129 5L also indicated that recombinant poliovirus can be successfully utilized for the development of the multivalent vaccines.

  • PDF

Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules

  • Piras, Vincent;Selvarajoo, Kumar;Fujikawa, Naoki;Choi, Sang-Dun;Tomita, Masaru;Giuliani, Alessandro;Tsuchiya, Masa
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.