Browse > Article

Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules  

Piras, Vincent (Institute for Advanced Biosciences, Keio University)
Selvarajoo, Kumar (Institute for Advanced Biosciences, Keio University)
Fujikawa, Naoki (Institute for Advanced Biosciences, Keio University)
Choi, Sang-Dun (Department of Molecular Science and Technology, Ajou University)
Tomita, Masaru (Institute for Advanced Biosciences, Keio University)
Giuliani, Alessandro (Institute Superiore di Sanita', Environment and Health Department)
Tsuchiya, Masa (Institute for Advanced Biosciences, Keio University)
Abstract
MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.
Keywords
TLR4 innate immunity; co-regulated genes; miroRNA; dynamic regulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lai, E.C. (2004). Predicting and validating microRNA targets. Genome BioI. 5, 115   DOI
2 Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., and Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766-770   DOI   ScienceOn
3 Shalgi, R., Lieber, D., Oren, M., and Pilpel, Y. (2007). Global and Local Architecture of the Mammalian microRNATranscription Factor Regulatory Network. PLoS Comput BioI. 3, e131   DOI   ScienceOn
4 Yeo, Z.X., Wong, S.T., Arjunan, S.N.V., Piras, V., Tomita, M., Selvarajoo, K., Giuliani, A., and Tsuchiya, M. (2007). Sequential logic model deciphers dynamic transcriptional control of gene expressions. PLoS One 2, e776   DOI
5 Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563   DOI   ScienceOn
6 Rajewsky, N. (2006). microRNA target predictions in animals. Nat. Genet. 38, Suppl:S8-13   DOI   ScienceOn
7 Tsang, J., Zhu, J., and van Oudenaarden, A. (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 26, 753-767   DOI   ScienceOn
8 Baskerville, S. and Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247   DOI   ScienceOn
9 Lewis, B.P., Shih, I.H, Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798   DOI   ScienceOn
10 Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C., and Rajewsky, N. (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Compu.t BioI. 1, e13   DOI
11 Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481-12486
12 Lai, E.C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363-364   DOI   ScienceOn
13 Hirotani. T., Yamamoto, M., Kumagai, Y., Uematsu, S., Kawase, I., Takeuchi, O., and Akira, S. (2005). Regulation of lipopolysaccharide-inducible genes by MyD88 and Toli/lL-1 domain containing adaptor inducing IFN-beta. Biochem Biophys Res Commun. 328, 383-392   DOI   ScienceOn
14 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297   DOI   ScienceOn
15 Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433,769-773   DOI   ScienceOn
16 Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., and Rajewsky, N. (2005). microRNA target predictions in vertebrates. Nat Genet. 37,495-500   DOI   ScienceOn
17 Sood, P., Krek, A., Zavolan, M., Macino, G., and Rajewsky, N. (2006). Celi-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 103, 2746-2751