Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules

  • 발행 : 2007.09.30

초록

MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.

키워드

참고문헌

  1. Hirotani. T., Yamamoto, M., Kumagai, Y., Uematsu, S., Kawase, I., Takeuchi, O., and Akira, S. (2005). Regulation of lipopolysaccharide-inducible genes by MyD88 and Toli/lL-1 domain containing adaptor inducing IFN-beta. Biochem Biophys Res Commun. 328, 383-392 https://doi.org/10.1016/j.bbrc.2004.12.184
  2. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
  3. Taganov, K.D., Boldin, M.P., Chang, K.J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481-12486
  4. Sood, P., Krek, A., Zavolan, M., Macino, G., and Rajewsky, N. (2006). Celi-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 103, 2746-2751
  5. Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563 https://doi.org/10.1016/j.cell.2005.07.031
  6. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433,769-773 https://doi.org/10.1038/nature03315
  7. Lai, E.C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363-364 https://doi.org/10.1038/ng865
  8. Baskerville, S. and Bartel, D.P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247 https://doi.org/10.1261/rna.7240905
  9. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., and Rajewsky, N. (2005). microRNA target predictions in vertebrates. Nat Genet. 37,495-500 https://doi.org/10.1038/ng1536
  10. Lewis, B.P., Shih, I.H, Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798 https://doi.org/10.1016/S0092-8674(03)01018-3
  11. Lai, E.C. (2004). Predicting and validating microRNA targets. Genome BioI. 5, 115 https://doi.org/10.1186/gb-2004-5-9-115
  12. Rajewsky, N. (2006). microRNA target predictions in animals. Nat. Genet. 38, Suppl:S8-13 https://doi.org/10.1038/ng1798
  13. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., and Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766-770 https://doi.org/10.1038/ng1590
  14. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C., and Rajewsky, N. (2005). microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Compu.t BioI. 1, e13 https://doi.org/10.1371/journal.pcbi.0010013
  15. Shalgi, R., Lieber, D., Oren, M., and Pilpel, Y. (2007). Global and Local Architecture of the Mammalian microRNATranscription Factor Regulatory Network. PLoS Comput BioI. 3, e131 https://doi.org/10.1371/journal.pcbi.0030131
  16. Tsang, J., Zhu, J., and van Oudenaarden, A. (2007). MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell. 26, 753-767 https://doi.org/10.1016/j.molcel.2007.05.018
  17. Yeo, Z.X., Wong, S.T., Arjunan, S.N.V., Piras, V., Tomita, M., Selvarajoo, K., Giuliani, A., and Tsuchiya, M. (2007). Sequential logic model deciphers dynamic transcriptional control of gene expressions. PLoS One 2, e776 https://doi.org/10.1371/journal.pone.0000776