• 제목/요약/키워드: immune-related genes

검색결과 239건 처리시간 0.027초

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Differential Level of Host Gene Expression Associated with Nucleopolyhedrovirus Infection in Silkworm Races of Bombyx mori

  • Lekha, Govindaraj;Vijayagowri, Esvaran;Sirigineedi, Sasibhushan;Sivaprasad, Vankadara;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제29권2호
    • /
    • pp.145-152
    • /
    • 2014
  • The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp 41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut. The immune response genes arylphorin, cathepsin B, gloverin, lebocin, serpin, Hsp 19.9, Hsp 20.1, Hsp 20.4, Hsp 20.8, Hsp 21.4, Hsp 23.7, Hsp 40, Hsp 70, Hsp90 revealed differential level of expression on NPV infection. The gloverin, serpin, Hsp 23.7 and Hsp 40 genes are significantly up-regulated in the resistant race after NPV infection. The early up-regulation of these genes suggests that these genes could play an important role in baculovirus resistance in the silkworm, B. mori.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

마늘의 Allicin이 사람 단핵세포의 사이토카인 생산 유전자의 발현에 미치는 영향 (Effects of Allicin on Cytokine Production Genes of Human Peripheral Blood Mononuclear Cells)

  • 박란숙
    • 한국식품영양학회지
    • /
    • 제15권3호
    • /
    • pp.191-196
    • /
    • 2002
  • 마늘의 주요 성분인 allicin투여 후 유도되는 사람 말초혈액의 단핵구의 유전자 발현에 미치는allicin의 효과를 규명하였다. DNA microarray를 이용하여, allicin이 chemokines, cytokine, 면역관련 유전자 및 신호전달 관련 유전자의 발현을 유도하는 것을 확인하였다. 반대로 allicin은 Th1 type의 획득면역 관련 유전자의 발현을 억제하였다. 염증세포에 있어서 allicin은 억제효과 및 자극 효과를 동시에 보여주었다. 이는 allicin이 휴지기 세포에서 먼저 증가시킨 특정 유전자의 발현을 이후에 감소시키는 결과를 보여주는 것으로 positive와 negative 효과를 발휘하는 새로운 기전을 제시하는 것이다. Allicin에 대한 광범위하고 새로운 관심을 고려해 볼 때 본 연구에서 보여주는 많은 유전자의 발현 양상은 좀 더 특정적이고 효과적인 치료법을 고안하는 데 유용할 것이다.

Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition

  • Jeong, Eun-Hye;Cho, Se-Young;Vaidya, Bipin;Ha, Sang Hoon;Jun, Sangmi;Ro, Hyun-Joo;Lee, Yujeong;Lee, Juhye;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1412-1419
    • /
    • 2020
  • Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture models for HuNoV replication has prevented developing effective anti-HuNoV therapies. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37℃ significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30℃ and 37℃ were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37℃ showed significantly increased autophagy-related genes (ATG5 and ATG7) and immune-related genes (IFNA, IFNB, ISG15, and NFKB) compared to mock. However, the virus cultured at 30℃ showed significantly decreased expression of autophagy-related genes (ATG5 and ATG7), but not significantly different major immune-related genes (IFNA, ISG15, and NFKB) compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30℃. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1 and providing adaptability to different genotypes.

누에에의 차별화 선별을 통한 면역 관련 유도 유전자의 분리와 특성 (Isolation and Characterization of Inducible Genes from Bombyx mori Injected with E. coli by Differential Screening)

  • 김상현;제연호
    • 한국잠사곤충학회지
    • /
    • 제38권1호
    • /
    • pp.19-24
    • /
    • 1996
  • 누에에서 생체 방어에 관련된 새로운 항 세균성 펩타이드 유전자를 탐색 분리하기 위하여 누에 체강에 비 병원성 세균인 Escherichia coli를 주사하여 면역 반응의 일환으로 발현량이 증가하는 유도 유전자 종류를 조사 하였다. 체강 주사 8시간 후 누에에서 cDNA 유전자 은행을 만들고, 정상 및 유도 누에에서 분리한 각각의 mRNA를 탐침으로 차별화 선별을 하였다. 차별화 선별 결과 정상보다도 유도 누에의 탐침을 사용한 막에서 강도가 높은 클론 32개를 선발하였고, 29개 클론에 대해 전체 또는 부분 염기 서열을 분석하여 DNA 상동성을 조사하였다. DNA 상동성 비교를 통해 생산한 발현 유전자 꼬리표 중에는 비교적 상동 유의성이 인정되어 그 실체를 추정할 수 있는 19개의 클론이 있었다. 특히 곤충의 면역 작용에 직접적으로 관계하는 항세균성 펩타이드 유전자, hemolin 유전자, transferrin 유전자 등 4종의 유전 자원을 확보할 수 있었다.

  • PDF

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo;Kyeong Ah Jo;Soo-yeon Park;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.880-890
    • /
    • 2024
  • The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.

Identification of Differentially Expressed Genes between Neonatal and Peripubertal Rat Thymi Using $GeneFishing^{TM}$ Polymerase Chain Reaction

  • Kang, Da-Won;Kim, Gyu-Tae;Han, Jae-Hee
    • Reproductive and Developmental Biology
    • /
    • 제31권1호
    • /
    • pp.55-60
    • /
    • 2007
  • Aging causes thymus involution, and genes in thymus play an important role in the development of the immune system. In this study, we compared genes expressed in thymus of neonatal and peripubertal rats using annealing control primers (ACPs)-based GeneFishing polymerase chain reaction (PCR) and semiquantitative reverse transcription (RT)-PCR. We identified 10 differentially expressed genes (DEGs) with 20 ACPs. Of 10 DEGs, bystin-like, collagen type V alpha 1 (COL5A1), and T-cell receptor beta-chain segment 2 (TCRB2) that are related to immune-function were detected in rat thymus. Bystin-like and TCRB2 were up-regulated, while COL5A1 was down-regulated in peripubertal thymus. Semiquantitative RT-PCR confirmed postnatal changes in expression of bystin-like, COL5A1, and TCRB2. These results suggest that bystin-like, COL5A1, and TCRB2 could regulate immune function controlled in thymus as age increases.

Generation of Expressed Sequence Tags for Immune Gene Discovery and Marker Development in the Sea Squirt, Halocynthia roretzi

  • Kim, Young-Ok;Cho, Hyun-Kook;Park, Eun-Mi;Nam, Bo-Hye;Hur, Young-Baek;Lee, Sang-Jun;Cheong, Jae-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권9호
    • /
    • pp.1510-1517
    • /
    • 2008
  • Expresssed sequence tag (EST) analysis was developed from three cDNA libraries constructed from cells of the digestive tract, gonad, and liver of sea squirt. Randomly selected cDNA clones were partially sequenced to generate a total of 922 ESTs, in which 687 unique ESTs were identified respectively. Results of BLASTX search showed that 612 ESTs (89%) have homology to genes of known function whereas 75 ESTs (11%) were unidentified or novel. Based on the major function of their encoded proteins, the identified clones were classified into ten broad categories. We also identified several kinds of immune-related genes as identifying novel genes. Sequence analysis of ESTs revealed the presence of microsatellite-containing genes that may be valuable for further gene mapping studies. The accumulation of a large number of identified cDNA clones is invaluable for the study of sea squirt genetics and developmental biology. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Prognostic Value of an Immune Long Non-Coding RNA Signature in Liver Hepatocellular Carcinoma

  • Rui Kong;Nan Wang;Chun li Zhou;Jie Lu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.958-968
    • /
    • 2024
  • In recent years, there has been a growing recognition of the important role that long non-coding RNAs (lncRNAs) play in the immunological process of hepatocellular carcinoma (LIHC). An increasing number of studies have shown that certain lncRNAs hold great potential as viable options for diagnosis and treatment in clinical practice. The primary objective of our investigation was to devise an immune lncRNA profile to explore the significance of immune-associated lncRNAs in the accurate diagnosis and prognosis of LIHC. Gene expression profiles of LIHC samples obtained from TCGA database were screened for immune-related genes. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate Cox analysis. Then, the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were performed to evaluate the capability of the immune lncRNA signature as a prognostic indicator. Six long non-coding RNAs were identified via correlation analysis and Cox regression analysis considering their interactions with immune genes. Subsequently, tumor samples were categorized into two distinct risk groups based on different clinical outcomes. Stratification analysis indicated that the prognostic ability of this signature acted as an independent factor. The Kaplan-Meier method was employed to conduct survival analysis, results showed a significant difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Additionally, data obtained from gene set enrichment analysis (GSEA) revealed several potential biological processes in which these biomarkers may be involved. To summarize, this study demonstrated that this six-lncRNA signature could be identified as a potential factor that can independently predict the prognosis of LIHC patients.