• Title/Summary/Keyword: immune mechanism

Search Result 654, Processing Time 0.025 seconds

Oral Tolerance: Not Simple But more Complex

  • Chung, Yeonseok;Kang, Chang-Yuil
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.169-175
    • /
    • 2003
  • The intestinal immune system can discriminate between harmful and unharmful antigens and do not provoke productive immunity to unharmful antigen. Thus oral administration of antigen is one of classical methods for inducing antigen-specific immune tolerance in the periphery. Furthermore, oral tolerance has been investigated for the treatment of autoimmune disorders in human clinical trials. However, the detail mechanism of oral tolerance and contributing factors are not defined clearly at this time. Recent studies demonstrate unique types of immune cell that suppressing immune response, such as regulatory T cell and tolerogenic dendritic cell. This article reviews the factors involved in oral tolerance and discusses our current understanding base on the recent literatures and our works.

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Stimulatory Effect of ${\beta}$-glucans on Immune Cells

  • Kim, Hyung-Sook;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.191-195
    • /
    • 2011
  • ${\beta}$-Glucans are naturally occurring polysaccharides that are produced by bacteria, yeast, fungi, and many plants. Although their pharmacological activities, such as immunomodulatory, anti-infective and anti-cancer effects, have been well studied, it is still unclear how ${\beta}$-glucans exert their activities. However, recent studies on the ${\beta}$-glucans receptors shed some light on their mechanism of action. Since ${\beta}$-glucans have large molecular weights, they must bind surface receptors to activate immune cells. In this review, we summarize the immunopharmacological activities and the potential receptors of ${\beta}$-glucans in immune cells.

Aging of Immune System (면역 반응체계의 노화)

  • Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.817-823
    • /
    • 2019
  • Immune system provides defense integrity of body against external invaders. In order to accomplish the important defending role immune system is composed of many different components which are regenerated continuously during lifespan. The key components are professional killing cells such as macrophage, neutrophil, natural killer cell, and cytotoxic T cell and professional blocking molecule, antibody, which is produced by plasma cell, the terminal differentiated B cell. Immune response is orchestrated harmoniously by all these components mediated through antigen presenting cells such as dendritic cells. Immune responses can be divided into two ways: innate immune response and adaptive immune response depending on induction mechanism. Aging is a broad spectrum of physiological changes. Likewise other physiological changes, the immune components and responses are wane as aging is progressing. Immune responses become decline and dysregulating, which is called immunosenescense. Immune components of both innate and adaptive immune response are affected as aging progresses leading to increased vulnerability to infectious diseases. Numbers of immune cells and amounts of soluble immune factors were decreased in aged animal models and human and also functional and structural alterations in immune system were reduced and declined. Cellular intrinsic changes were discovered as well. Recent researches focusing on aging have been enormously growing. Many advanced tools were developed to bisect aging process in multi-directions including immune system area. This review will provide a broad overview of aging-associated changes of key components of immunity.

Micronized and Heat-Treated Lactobacillus plantarum LM1004 Stimulates Host Immune Responses Via the TLR-2/MAPK/NF-κB Signalling Pathway In Vitro and In Vivo

  • Lee, Jisun;Jung, Ilseon;Choi, Ji Won;Lee, Chang Won;Cho, Sarang;Choi, Tae Gyu;Sohn, Minn;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.704-712
    • /
    • 2019
  • Although nanometric dead Lactobacillus plantarum has emerged as a potentially important modulator of immune responses, its underlying mechanism of action has not been fully understood. This study aimed to identify the detailed biochemical mechanism of immune modulation by micronized and heat-treated L. plantarum LM1004 (MHT-LM1004, <$1{\mu}m$ in size). MHT-LM1004 was prepared from L. plantarum LM1004 via culture in a specifically designed membrane bioreactor and heat treatment. MHT-LM1004 was shown to effectively induce the secretion of $TNF-{\alpha}$ and IL-6 and the mRNA expression of inducible nitric oxide synthase (iNOS). MHT-LM1004 enhanced the expression of TLR-2, phosphorylation of MAPKs (ERK), and nuclear translocation of $NF-{\kappa}B$ in a dose-dependent manner. Oral administration of MHT-LM1004 ($4{\times}10^9$ or $4{\times}10^{11}cells/kg$ mouse body weight) increased the splenocyte proliferation and serum cytokine levels. These results suggested that MHT-LM1004 effectively enhances early innate immunity by activating macrophages via the TLR-2/MAPK/$NF-{\kappa}B$ signalling pathway and that this pathway is one of the major routes in immune modulation by the Lactobacillus species.

The Analysis of Exercise on the Immune Responses (운동이 면역력에 미치는 효과분석)

  • Kwak, Yi-Sub;Jin, Young-Wan;Paik, Il-Young;Um, Sang-Yong
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.117-123
    • /
    • 2005
  • The immune response to any stimulus is complex, requiring coordinated action by several types of cells in a tightly regulated sequence. Thus, a physical stress such as exercise may act at any number of points in the complex sequence of events collectively termed the immune response. Although exercise causes many propound changes in parameters of immune function, the nature and magnitude of such changes rely on several factors including the immune parameters of interest; type, intensity, and duration of exercise; fitness level or exercise history of the subject; environmental factors such as ambient temperature and humidity. Although regular moderate exercise appears to be important factor for increasing immunity, Athletes are susceptible to illness, in particular upper respiratory track infection, during periods of intense training and after competition. In addition, in elite athletes, frequent illness is associated with overtraining syndrome, a neuroendocrine disorder resulting from excessive training. Through this paper, we want to investigate the effects of exercise on the immunosuppression such as exercise induced lymphopenia, asthma, anaphylaxis, URT (upper respiratory track), and TB (tuberculosis) infection. and also, we want to suggest a direct mechanism, protection and therapy of exercise induced immunosuppression.

Ziziphus jujuba mill. Extract Promotes Myogenic Differentiation of C2C12 Skeletal Muscle Cells

  • Gyeong Do Park;So Young Eun;Yoon-Hee Cheon;Chong Hyuk Chung;Chang Hoon Lee;Myeung Su Lee;Ju-Young Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Ziziphus jujuba Mill. (ZJM), a traditional folk medicine and functional food in South Korea and China, has been reported to having pharmacological activities against anti-cancer, anti-oxidative, and anti-obesity. However, the effect of ZJM related to myoblast differentiation has not been known. In this study, we investigated the effects and mechanism of ZJM on myogenic differentiation of C2C12 cells. ZJM promotes myogenic differentiation and elevates the formation of multinucleated myotube compared to the control group. ZJM significantly increased the mRNA and protein expression of MyHC1, myogenin and MyoD in dose- and time-dependent manner. Interestingly, ZJM significantly inhibited the mRNA and protein expression of protein degradation markers, atrogin-1 and MuRF-1, in dose- and time-dependent manner. Taken together, our data suggest that ZJM is a potential functional candidate for muscle growth and strength by promoting myogenic differentiation.

The Role of Transglutaminase in Double-stranded DNA-Triggered Antiviral Innate Immune Response

  • Yoo, Jae-Wook;Hong, Sun-Woo;Bose, Shambhunath;Kim, Ho-Jun;Kim, Soo-Youl;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3893-3898
    • /
    • 2011
  • Cellular uptake of double-stranded DNA (dsDNA) triggers strong innate immune responses via activation of NF-${\kappa}B$ transcription factor. However, the detailed mechanism of dsDNA-mediated innate immune response remains yet to be elucidated. Here, we show that the expression of tazarotene-induced gene 3 (TIG3) is dramatically induced by dsDNA stimulation, and the siRNA-mediated down-regulation of TIG3 mRNA results in significant suppression of dsDNA-triggered cytokine expression. Because TIG3 has been previously shown to physically interact with transglutaminase (TG) 1 to activate TG activity, and TG2 has been shown to induce NF-${\kappa}B$ activity by inducing $I{\kappa}B{\alpha}$ polymerization, we tested whether TG also plays a role in dsDNA-mediated innate immune response. Pre-treatment of TG inhibitors dramatically reduces dsDNA-triggered cytokine induction. We also show that, in HeLa cells, TG2 is the major TG, and TIG3 physically interacts with TG2. Combined together, our results suggest a novel mechanism of dsDNA-triggered innate immune response which is critically dependent on TIG3 and TG2.

Mechanism of Differential Ag-specific Immune Induction by Different Tumor Cell Lysate Pulsed DC (종양 세포 용해액에 따른 수지상세포 유도 항원 특이 면역반응 차이의 기전 연구)

  • Lee, Kang-Eun;Shon, Hye-Jin;Kim, Myung-Joo;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2006
  • Background: Tumor cell lysate has been considered as a preferential antigen source for the therapeutic dendritic cell pulsing. Our experiences with in vivo study with animal tumor model indicate the tumor cell lysate dependent differential effect of DC therapy. Our previous data show that MC38 lysate pulsed-DC induced stronger ag-specific immunity than CT26 lysate pulsed-DC in vitro. In this study we tried to reveal the mechanism for differential induction of ag-specific immunity of different colon cancer cell lysate pulsed-DCs. Methods: MC38 and CT26 cell lines were prepared as lysate by freezing-thawing procedure. Tumor cell antigenicity was confirmed by detecting the surface expression of MHC I/II & B7.1/2 molecules. IL-10, IL-12 and TGF-beta in the tumor cell lysate were detected by ELISA and the presence of heat shock proteins were analysed by western blotting. Results: The secretion of IL-10, a immune-inhibitory cytokine was about 470% higher in CT26 lysate than in MC38. Hsp 70 was detected only in the MC38 lysate but not in the CT26. On the other hand, Hsp 60 and 90 expression were not different in two colon cancer cell lysates. Conclusion: In two different colon cancer cell lysate, immune inhibitory IL-10 (higher in CT26) and Hsp70 (MC38 superiority) were differentially expressed. These data indicate that higher agspecific immunity induction by MC38 lysate pulsed-DC may due to the expression of hsp70 and lower secretion of IL-10, a immune-inhibitory cytokine than CT26 lysate. The significance of other cytokine and the surface marker expression will be discussed.

Effects of Coicis Semen on the Immune Responses in the Mouse (의이인(薏苡仁)의 투여(投與)가 마우스의 세포성(細胞性) 및 체액성(體液性) 면역기능(免疫機能)에 미치는 영향(影響))

  • Woo, Young-Eun;Kim, Hyeong-Kyun;Song, Bong-Keun;Lee, Eon-Jeong
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.269-288
    • /
    • 1996
  • Coicis Semen is one of the oriental medicine that has been used for the treatment of the diseases such as pulmonary abscess, periappendicular abscess and wart since ancient times. However, the mechanism of the action of the drug is not well studied. This study was done to investigate the effects of Coicis Semen on the host defence mechanism. Effects of Coicis Semen on the immune responses were analysed by measuring the contact hypersensitivity, hemagglutinin, hemolysin and rosette formation, cytotoxicity, and reactive oxygen intermidiates production. As the results, water extract of Coicis Semen administration enhanced the antibodies (hemagglutinin and hemolysin) formation and the appearance of rosette forming cells of the spleen. Also Coicis Semen increased the allogeneic immune response in the mouse, showed cytotoxic activity against human leukemia cell line(K562) and decreased the contact hypersensitivity against dinitroflurobenzene. Also administration of Coicis Senlen slightly increased NK cell activity and enhanced the production of such reactive oxygen intermediates as superoxide and hydrogen peroxide from the macrophages in vivo and in vitro. The above results demonstrate that Coicis Semen has enhancing effects on cellular and humoral immune responses against disease.

  • PDF