• Title/Summary/Keyword: immune cells

Search Result 3,345, Processing Time 0.039 seconds

Diverse Mechanisms of Relaxin's Action in the Regulation of Smooth Muscles and Extracellular Matrix of Vasculature and Fibrosis (혈관과 섬유증의 평활근 및 세포외기질 조절에 대한 릴랙신의 다양한 작용기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.175-188
    • /
    • 2022
  • Relaxin has been demonstrated to have regulatory functions on both the smooth muscle and extracellular matrix (ECM) of blood vessels and fibrotic organs. The diverse mechanisms by which relaxin acts on small resistance arteries and fibrotic organs, including the bladder, are reviewed here. Relaxin induces vasodilation by inhibiting the contractility of vascular smooth muscles and by increasing the passive compliance of vessel walls through the reduction of ECM components, such as collagen. The primary cellular mechanism whereby relaxin induces arterial vasodilation is mediated by the endothelium-dependent production of nitric oxide (NO) through the activation of RXFP1/PI3K, Akt phosphorylation, and eNOS. In addition, relaxin triggers different alternative pathways to enhance the vasodilation of renal and mesenteric arteries. In small renal arteries, relaxin stimulates the activation of the endothelial MMPs and EtB receptors and the production of VEGF and PlGF to inhibit myogenic contractility and collagen deposition, thereby bringing about vasodilation. Conversely, in small mesenteric arteries, relaxin augments bradykinin (BK)-evoked relaxation in a time-dependent manner. Whereas the rapid enhancement of the BK-mediated relaxation is dependent on IKCa channels and subsequent EDH induction, the sustained relaxation due to BK depends on COX activation and PGI2. The anti-fibrotic effects of relaxin are mediated by inhibiting the invasion of inflammatory immune cells, the endothelial-to-mesenchymal transition (EndMT), and the differentiation and activation of myofibroblasts. Relaxin also activates the NOS/NO/cGMP/PKG-1 pathways in myofibroblasts to suppress the TGF-β1-induced activation of ERK1/2 and Smad2/3 signaling and deposition of ECM collagen.

Antioxidant, anti-inflammatory, and antibacterial activities of a 70% ethanol-Symphyocladia linearis extract

  • Jeong Min Lee;Mi-Jin Yim;Hyun-Soo Kim;Seok-Chun Ko;Ji-Yul Kim;Gun-Woo Oh;Kyunghwa Baek;Dae-Sung Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.579-586
    • /
    • 2022
  • Research on the potential biological activity of red alga Symphyocladia spp. has been limited to Symphyocladia latiuscula, which is widely used as a food ingredient in Korea. Here, we examined the biological activity of another species, Symphyocladia linearis, which is found in Korea and was reported as a new species in 2013. The aim of this study was to evaluate the antioxidant, anti-inflammatory, and antibacterial properties of a 70% ethanol extract of S. linearis. Antioxidant activity, which was evaluated using radical scavenging assays, revealed half maximal inhibitory concentration values for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) of 34.57 and 11.70 ㎍/mL algal extract, respectively. Anti-inflammatory activity of the S. linearis ethanolic extract was evaluated using RAW 264.7 cells by measuring the inhibition of lipopolysaccharide-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The potential cytotoxicity of NO and PGE2 was first examined, confirming no toxicity at concentrations ranging from 10-100 ㎍/mL. NO production was inhibited 61.1% and 78.0% at 50 and 100 ㎍/mL S. linearis extract, respectively; and PGE2 production was inhibited 69.1%, 83.2%, and 94.8% at 25, 50, and 100 ㎍/mL S. linearis extract, respectively. Thus, the S. linearis extract showed very strong efficacy against PGE2 production. The cellular production of reactive oxygen species, measured using 2',7'-dichlorofluorescin diacetate fluorescence, was inhibited 48.8% by the addition of 100 ㎍/mL S. linearis extract. Antibacterial activity was evaluated using the disc diffusion method and minimum inhibitory concentration (MIC). S. linearis was effective only against gram-positive bacteria, exhibiting antibacterial activity against Staphylococcus aureus with a MIC of 256 ㎍/mL extract and against Bacillus cereus with a MIC of 1,024 ㎍/mL extract. Based on these results, we infer that a 70% ethanolic extract of S. linearis possesses strong anti-inflammatory properties, and therefore has the potential to be used in the prevention and treatment of inflammatory and immune diseases.

Function of 27-Hydroxycholesterol in Various Tissues and Diseases (다양한 조직 및 질병에서 27-하이드록시콜레스테롤의 역할 및 기전 고찰)

  • Shim, Wan-Seog;Lee, Chanhee;Azamov, Bakhovuddin;Kim, Koanhoi;Lee, Dongjun;Song, Parkyong
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2022
  • Oxysterols are oxygenated metabolites of cholesterol generated by serial enzymatic reactions during bile acid synthesis. Similar to cholesterol, oxysterols move rapidly to the intracellular region and modulate various cellular processes, such as immune cell responses, lipid metabolism, and cholesterol homeostasis. Different nuclear transcription factors, such as glucocorticoid, estrogen, and liver X receptors, can be modulated by oxysterols in multiple tissues. The most abundant oxysterol, 27-hydroxycholesterol (27-OHC), is a well-known selective modulator that can either activate or suppress estrogen receptor activity in a tissue-specific manner. The contribution of 27-OHC in atherosclerosis development is apparent because a large amount of it is found in atherosclerotic plaques, accelerating the transformation of macrophages into foam cells that uptake extracellular modified lipids. According to previous studies, however, there are opposing opinions about how 27-OHC affects lipid and cholesterol metabolism in metabolic organs, including the liver and adipose tissue. In particular, the effects of 27-OHC on lipid metabolism are entirely different between in vitro and in vivo conditions, suggesting that understanding the physiology of this oxysterol requires a sophisticated approach. This review summarizes the potential effects of 27-OHC in atherosclerosis and metabolic syndromes with a special discussion of its role in metabolic tissues.

Synergistic Inhibition of Burkitt's Lymphoma with Combined Ibrutinib and Lapatinib Treatment (Ibrutinib과 Lapatinib 병용 치료에 의한 버킷림프종의 상호 작용적 억제)

  • Chae-Eun YANG;Se Been KIM;Yurim JEONG;Jung-Yeon LIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.298-305
    • /
    • 2023
  • Burkitt's lymphoma is a distinct subtype of non-Hodgkin's lymphoma originating from B-cells that is notorious for its aggressive growth and association with immune system impairments, potentially resulting in rapid and fatal outcomes if not addressed promptly. Optimizing the use of Food and Drug Administration-approved medications, such as combining known safe drugs, can lead to time and cost savings. This method holds promise in accelerating the progress of novel treatments, ultimately facilitating swifter access for patients. This study explores the potential of a dual-targeted therapeutic strategy, combining the bruton tyrosine kinase-targeting drug Ibrutinib and the epidermal growth factor receptor/human epidermal growth factor receptor-2-targeting drug Lapatinib. Ramos and Daudi cell lines, well-established models of Burkitt's lymphoma, were used to examine the impact of this combination therapy. The combination of Ibrutinib and Lapatinib inhibited cell proliferation more than using each drug individually. A combination treatment induced apoptosis and caused cell cycle arrest at the S and G2/M phases. This approach is multifaceted in its benefits. It enhances the efficiency of the drug development timeline and maximizes the utility of currently available resources, ensuring a more streamlined and resource-effective research process.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

Vitamin D Attenuates Pain and Cartilage Destruction in OA Animals via Enhancing Autophagic Flux and Attenuating Inflammatory Cell Death

  • JooYeon Jhun;Jin Seok Woo;Ji Ye Kwon;Hyun Sik Na;Keun-Hyung Cho;Seon Ae Kim;Seok Jung Kim;Su-Jin Moon;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.22 no.4
    • /
    • pp.34.1-34.19
    • /
    • 2022
  • Osteoarthritis (OA) is the most common form of arthritis associated with ageing. Vitamin D has diverse biological effect on bone and cartilage, and observational studies have suggested it potential benefit in OA progression and inflammation process. However, the effect of vitamin D on OA is still contradictory. Here, we investigated the therapeutic potential of vitamin D in OA. Six-week-old male Wistar rats were injected with monosodium iodoacetate (MIA) to induce OA. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. Autophagy activity and mitochondrial function were also measured. Vitamin-D (1,25(OH)2D3) and celecoxib were used to treat MIA-induced OA rats and OA chondrocytes. Oral supplementation of vitamin D resulted in significant attenuations in OA pain, inflammation, and cartilage destruction. Interestingly, the expressions of MMP-13, IL-1β, and MCP-1 in synovial tissues were remarkably attenuated by vitamin D treatment, suggesting its potential to attenuate synovitis in OA. Vitamin D treatment in OA chondrocytes resulted in autophagy induction in human OA chondrocytes and increased expression of TFEB, but not LC3B, caspase-1 and -3, in inflamed synovium. Vitamin D and celecoxib showed a synergistic effect on antinociceptive and chondroprotective properties in vivo. Vitamin D showed the chondroprotective and antinociceptive property in OA rats. Autophagy induction by vitamin D treatment may be a promising treatment strategy in OA patients especially presenting vitamin D deficiency. Autophagy promoting strategy may attenuate OA progression through protecting cells from damage and inflammatory cell death.

Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice

  • Eun-Hye Hong;Jae-Hyoung Song;Seong-Ryeol Kim;Jaewon Cho;Birang Jeong;Heejung Yang;Jae-Hyeon Jeong;Jae-Hee Ahn;Hyunjin Jeong;Seong-Eun Kim;Sun-Young Chang;Hyun-Jeong Ko
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2020
  • Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2',4'-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-κB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.

Changes in Immunogenicity of Preserved Aortic Allograft (보존된 동종동맥편 조직의 면역성 변화에 관한 연구)

  • 전예지;박영훈;강영선;최희숙;임창영
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1173-1181
    • /
    • 1996
  • The causes of degenerative changes in allograft cardiac valves are not well known to this day. Today's preserved allografts possess highly viable endothelial cells and degeneration of allografts can be facilitated by immune reaction which may be mediated by these viable cells. To test the antigenicity of endothelial cells, pieces from aortic wall were obtained from fresh and cryo-preserved rat allograft. Timings of sampling were prior to sterilization, after sterilization, after 1, 2, 7, 14 days of fresh preservation and cryopreservation. Endothelial cells were tested by immunohistochemical methods using monoclonal antibodies to MHC class I(MRC OX-18), class II(MRC OX-6) and ICAM-1 antigens. After transplantation of each group of aortic allograft at the subcutaneous layers of rats, population of CD4$^{+}$ T cell and CD8$^{+}$ T cell were analyzed with monoclonal antibodies after 1, 2, 3, 4, 6 and 8 weeks. MHC class I expression was 23.95% before preservation and increased to 35.53~48.08% after preservation(p=0.0183). MHC Class II expression was 9.72% before preservation and 10.13~13.39% after preservation(P=0.1599). ICAM-1 expression was 15.02% before preservation and increased to 19.85~35.33% after preservation(P=0.001). The proportion of CD4$^{+}$ T-cell was 42.13% before transplantation. And this was 49.23~36.8% after transplantation in No treat group (p=0.955), decreased to 29.56~32.80% in other group(p=0.0001~0.008). In all the groups, the proportion of CD8$^{+}$ T-cell increased from 25.57% before transplantation to 42.32~58.92% after transplantation(p=0.000l~0.0002). The CD4$^{+}$/CD8$^{+}$ ratio decreased from 1.22~2.28 at first week to 0.47~0.95 at eighth week(p=0.0001). The results revealed that the expression of MHC class I and ICAM-1 in aortic allograft endothelium were increased but that of MHC class II were not changed, despite the different method of preservation. During 8 weeks after transplantation of aortic allograft, the subpopulations of CD4$^{+}$ T cell were not changed or only slightly decreased but those of CD8$^{+}$ T cell were progressively increased.ely increased.

  • PDF

Lipopolysaccharide-induced Synthesis of IL-1beta, IL-6, TNF-alpha and TGF-beta by Peripheral Blood Mononuclear Cells (내독소에 의한 말초혈액 단핵구의 IL-1beta, IL-6, TNF-alpha와 TGF-beta 생성에 관한 연구)

  • Jung, Sung-Hwan;Park, Choon-Sik;Kim, Mi-Ho;Kim, Eun-Young;Chang, Hun-Soo;Ki, Shin-Young;Uh, Soo-Taek;Moon, Seung-Hyuk;Kim, Yang-Hoon;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.846-860
    • /
    • 1998
  • Background: Endotoxin (LPS : lipopolysaccharide), a potent activator of immune system, can induce acute and chronic inflammation through the production of cytokines by a variety of cells, such as monocytes, endothelial cells, lymphocytes, eosinophils, neutrophils and fibroblasts. LPS stimulate the mononucelar cells by two different pathway, the CD14 dependent and independent way, of which the former has been well documented, but not the latter. LPS binds to the LPS-binding protein (LBP), in serum, to make the LPS-LBP complex which interacts with CD14 molecules on the mononuclear cell surface in peripheral blood or is transported to the tissues. In case of high concentration of LPS, LPS can stimulate directly the macrophages without LBP. We investigated to detect the generation of proinflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-$\alpha$ and fibrogenic cytokine, TGF-$\beta$, by peripheral blood mononuclear cells (PBMC) after LPS stimulation under serum-free conditions, which lacks LBPs. Methods : PBMC were obtained by centrifugation on Ficoll Hypaque solution of peripheral venous bloods from healthy normal subjects, then stimulated in the presence of LPS (0.1 ${\mu}g/mL$ to 100 ${\mu}g/mL$ ). The activities of IL-1, IL-6, TNF, and TGF-$\beta$ were measured by bioassaies using cytokines - dependent proliferating or inhibiting cell lines. The cellular sources producing the cytokines was investigated by immunohistochemical stains and in situ hybridization. Results : PBMC started to produce IL-6, TNF-$\alpha$ and TGF-$\beta$ in 1 hr, 4 hrs and 8hrs, respectively, after LPS stimulation. The production of IL-6, TNF-$\alpha$ and TGF-$\beta$ continuously increased 96 hrs after stimulation of LPS. The amount of production was 19.8 ng/ml of IL-6 by $10^5$ PBMC, 4.1 ng/mL of TNF by $10^6$ PBMC and 34.4 pg/mL of TGF-$\beta$ by $2{\times}10^6$ PBMC. The immunoreactivity to IL-6, TNF-$\alpha$ and TGF-$\beta$ were detected on monocytes in LPS-stimulated PBMC. Some of lymphocytes showed positive immunoreactivity to TGF-$\beta$. Double immunohistochemical stain showed that IL-1$\beta$, IL-6, TNF-$\alpha$ expression was not associated with CD14 postivity on monocytes. IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$mRNA expression were same as observed in immunoreactivity for each cytokines. Conclusion: When monocytes are stimulated with LPS under serum-free conditions, IL-6 and TNF-$\alpha$ are secreted in early stage of inflammation. In contrast, the secretion of TGF-$\beta$ arise in the late stages and that is maintained after 96 hrs. The main cells releasing IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ are monocytes, but also lymphocytes can secret TGF-$\beta$.

  • PDF

Nutritional and Organoleptic Evaluations of the By-products from Chlorella vulgaris after Lipid Extraction (Chlorella vulgaris의 지질 추출 후 부산물의 영양학적 및 관능적 평가)

  • Oh, Sung-Ho;Choi, Woon-Yong;Seo, Yong-Chang;Kim, Ga-Bin;Lee, Shin-Young;Jeong, Kyung-Hwan;Kang, Do-Hyung;Lee, Hyeon-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.920-926
    • /
    • 2010
  • Marine alga, Chlorella vulgaris, was extracted by chloroform-methanol (2:1, v/v) solvents for lipid extraction at $35^{\circ}C$ for five hours (HCM-35) and its process was compared with conventional lipid extraction condition such as chloroform-methanol (2:1, v/v) at $65^{\circ}C$ for one hour (CM-65). This low temperature extraction process showed that 80% of total lipid was extracted and its residues contained relatively unchanged amounts of intact proteins and other minerals as well as amino acid profiles. Interestingly enough, the weight fraction of carbohydrate in the residues slightly increased due to less denaturation at low process temperature. The biological activities of the residues such as cytotoxicity and immune cell growth activation were not much changed after being extracted. The sensory evaluation were found to be very favorable for being used as a food additive and/or food supplement. This result could also help to maintain the economic feasibility of utilizing marine resources in food and other relevant industries.