Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.3.256

Function of 27-Hydroxycholesterol in Various Tissues and Diseases  

Shim, Wan-Seog (Department of Convergence Medicine, Pusan National University School of Medicine)
Lee, Chanhee (Department of Convergence Medicine, Pusan National University School of Medicine)
Azamov, Bakhovuddin (Department of Convergence Medicine, Pusan National University School of Medicine)
Kim, Koanhoi (Department of Pharmacology, Pusan National University School of Medicine)
Lee, Dongjun (Department of Convergence Medicine, Pusan National University School of Medicine)
Song, Parkyong (Department of Convergence Medicine, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.32, no.3, 2022 , pp. 256-262 More about this Journal
Abstract
Oxysterols are oxygenated metabolites of cholesterol generated by serial enzymatic reactions during bile acid synthesis. Similar to cholesterol, oxysterols move rapidly to the intracellular region and modulate various cellular processes, such as immune cell responses, lipid metabolism, and cholesterol homeostasis. Different nuclear transcription factors, such as glucocorticoid, estrogen, and liver X receptors, can be modulated by oxysterols in multiple tissues. The most abundant oxysterol, 27-hydroxycholesterol (27-OHC), is a well-known selective modulator that can either activate or suppress estrogen receptor activity in a tissue-specific manner. The contribution of 27-OHC in atherosclerosis development is apparent because a large amount of it is found in atherosclerotic plaques, accelerating the transformation of macrophages into foam cells that uptake extracellular modified lipids. According to previous studies, however, there are opposing opinions about how 27-OHC affects lipid and cholesterol metabolism in metabolic organs, including the liver and adipose tissue. In particular, the effects of 27-OHC on lipid metabolism are entirely different between in vitro and in vivo conditions, suggesting that understanding the physiology of this oxysterol requires a sophisticated approach. This review summarizes the potential effects of 27-OHC in atherosclerosis and metabolic syndromes with a special discussion of its role in metabolic tissues.
Keywords
Adipose tissue; atherosclerosis; Estrogen receptor (ER); 27-hydroxycholesterol (27-OHC); liver;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bieghs, V., Hendrikx, T., van Gorp, P. J., Verheyen, F., Guichot, Y. D., Walenbergh, S. M., Jeurissen, M. L., Gijbels, M., Rensen, S. S., Bast, A., Plat, J., Kalhan, S. C., Koek, G. H., Leitersdorf, E., Hofker, M. H., Lutjohann, D. and ShiriSverdlov, R. 2013. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology 144, 167-178 e161.   DOI
2 Brown, M. S. and Goldstein, J. L. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331-340.   DOI
3 Asghari, A., Ishikawa, T., Hiramitsu, S., Lee, W. R., Umetani, J., Bui, L., Korach, K. S. and Umetani, M. 2019. 27-Hydroxycholesterol promotes adiposity and mimics adipogenic diet-induced inflammatory signaling. Endocrinology 160, 2485-2494.   DOI
4 Ouchi, N., Parker, J. L., Lugus, J. J. and Walsh, K. 2011. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85-97.   DOI
5 Li, D., Cui, Y., Wang, X., Liu, F. and Li, X. 2021. Apple polyphenol extract improves high-fat diet-induced hepatic steatosis by regulating bile acid synthesis and gut microbiota in C57BL/6 male mice. J. Agric. Food Chem. 69, 6829-6841.   DOI
6 Doria, M., Maugest, L., Moreau, T., Lizard, G. and Vejux, A. 2016. Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease. Free Radic. Biol. Med. 101, 393-400.   DOI
7 Bjorkhem, I. 2009. Are side-chain oxidized oxysterols regulators also in vivo? J. Lipid Res. 50 Suppl, S213-218.   DOI
8 Ding, X., Zhang, W., Li, S. and Yang, H. 2019. The role of cholesterol metabolism in cancer. Am. J. Cancer Res. 9, 219-227.
9 Garcia-Cruset, S., Carpenter, K. L., Guardiola, F., Stein, B. K. and Mitchinson, M. J. 2001. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic. Res. 35, 31-41.   DOI
10 Kim, B. Y., Son, Y., Cho, H. R., Lee, D., Eo, S. K. and Kim, K. 2021. 27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms. Kor. J. Physiol. Pharmacol. 25, 111-118.   DOI
11 Li, D., Long, W., Huang, R., Chen, Y. and Xia, M. 2018. 27- Hydroxycholesterol inhibits sterol regulatory element-binding protein 1 activation and hepatic lipid accumulation in mice. Obesity (Silver Spring) 26, 713-722.   DOI
12 Dietschy, J. M. and Turley, S. D. 2004. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45, 1375-1397.   DOI
13 Zhou, Z., Moore, T. M., Drew, B. G., Ribas, V., Wanagat, J., Civelek, M., Segawa, M., Wolf, D. M., Norheim, F., Seldin, M. M., Strumwasser, A. R., Whitney, K. A., Lester, E., Reddish, B. R., Vergnes, L., Reue, K., Rajbhandari, P., Tontonoz, P., Lee, J., Mahata, S. K., Hewitt, S. C., Shirihai, O., Gastonbury, C., Small, K. S., Laakso, M., Jensen, J., Lee, S., Drevon, C. A., Korach, K. S., Lusis, A. J. and Hevener, A. L. 2020. Estrogen receptor alpha controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci. Transl. Med. 12, eaax8096.   DOI
14 Li, J., Daly, E., Campioli, E., Wabitsch, M. and Papadopoulos, V. 2014. De novo synthesis of steroids and oxysterols in adipocytes. J. Biol. Chem. 289, 747-764.   DOI
15 Liao, J. K. 2005. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am. J. Cardiol. 96, 24F-33F.
16 Mutemberezi, V., Guillemot-Legris, O. and Muccioli, G. G. 2016. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res. 64, 152-169.   DOI
17 Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S. and Espenshade, P. J. 2000. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102, 315-323.   DOI
18 Escher, G., Krozowski, Z., Croft, K. D. and Sviridov, D. 2003. Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J. Biol. Chem. 278, 11015-11019.   DOI
19 Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A. H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S. and Yamada, N. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274, 35832-35839.   DOI
20 Piccinin, E., Villani, G. and Moschetta, A. 2019. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat. Rev. Gastroenterol. Hepatol. 16, 160-174.   DOI
21 Sun, L. P., Li, L., Goldstein, J. L. and Brown, M. S. 2005. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J. Biol. Chem. 280, 26483-26490.   DOI
22 Vogeli, I., Jung, H. H., Dick, B., Erickson, S. K., Escher, R., Funder, J. W., Frey, F. J. and Escher, G. 2013. Evidence for a role of sterol 27-hydroxylase in glucocorticoid metabolism in vivo. J. Endocrinol. 219, 119-129.   DOI
23 Wolf, G. 1999. The role of oxysterols in cholesterol homeostasis. Nutr. Rev. 57, 196-198.   DOI
24 Meaney, S., Hassan, M., Sakinis, A., Lutjohann, D., von Bergmann, K., Wennmalm, A., Diczfalusy, U. and Bjorkhem, I. 2001. Evidence that the major oxysterols in human circulation originate from distinct pools of cholesterol: a stable isotope study. J. Lipid Res. 42, 70-78.   DOI
25 Matsuda, M., Korn, B. S., Hammer, R. E., Moon, Y. A., Komuro, R., Horton, J. D., Goldstein, J. L., Brown, M. S. and Shimomura, I. 2001. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206-1216.   DOI
26 Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., Umetani, M., Geradts, J. and McDonnell, D. P. 2013. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094-1098.   DOI
27 Horton, J. D., Goldstein, J. L. and Brown, M. S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131.   DOI
28 Iuliano, L. 2011. Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chem. Phys. Lipids 164, 457-468.   DOI
29 Lorbek, G., Lewinska, M. and Rozman, D. 2012. Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases. FEBS J. 279, 1516-1533.   DOI
30 Manrique, C., Lastra, G., Habibi, J., Mugerfeld, I., Garro, M. and Sowers, J. R. 2012. Loss of estrogen receptor alpha signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal. Med. 2, 200-210.   DOI
31 Miziorko, H. M. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys. 505, 131-143.   DOI
32 Wang, Y., An, Y., Ma, W., Yu, H., Lu, Y., Zhang, X., Wang, Y., Liu, W., Wang, T. and Xiao, R. 2020. 27-Hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction. J. Neuroinflammation 17, 199.   DOI
33 Russell, D. W. 2009. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 50 Suppl, S120-125.   DOI
34 Sharma, B. and Agnihotri, N. 2019. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J. Steroid Biochem. Mol. Biol. 191, 105377.   DOI
35 Nofer, J. R. 2012. Estrogens and atherosclerosis: insights from animal models and cell systems. J. Mol. Endocrinol. 48, R13-29.   DOI
36 Nordlie, R. C., Foster, J. D. and Lange, A. J. 1999. Regulation of glucose production by the liver. Annu. Rev. Nutr. 19, 379-406.   DOI
37 Umetani, M., Domoto, H., Gormley, A. K., Yuhanna, I. S., Cummins, C. L., Javitt, N. B., Korach, K. S., Shaul, P. W. and Mangelsdorf, D. J. 2007. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat. Med. 13, 1185-1192.   DOI
38 Umetani, M., Ghosh, P., Ishikawa, T., Umetani, J., Ahmed, M., Mineo, C. and Shaul, P. W. 2014. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell. Metab. 20, 172-182.   DOI
39 Wahlstrom, A., Sayin, S. I., Marschall, H. U. and Backhed, F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell. Metab. 24, 41-50.   DOI
40 Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J. L. and Brown, M. S. 2002. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489-500.   DOI
41 Zhu, D., Shen, Z., Liu, J., Chen, J., Liu, Y., Hu, C., Li, Z. and Li, Y. 2016. The ROS-mediated activation of STAT-3/VEGF signaling is involved in the 27-hydroxycholesterol-in duced angiogenesis in human breast cancer cells. Toxicol. Lett. 264, 79-86.   DOI
42 Shirouchi, B., Kashima, K., Horiuchi, Y., Nakamura, Y., Fujimoto, Y., Tong, L. T. and Sato, M. 2017. 27-Hydroxycholesterol suppresses lipid accumulation by down-regulating lipogenic and adipogenic gene expression in 3T3-L1 cells. Cytotechnology 69, 485-492.   DOI
43 Spann, N. J. and Glass, C. K. 2013. Sterols and oxysterols in immune cell function. Nat. Immunol. 14, 893-900.   DOI