• 제목/요약/키워드: immune activation

검색결과 947건 처리시간 0.027초

Enhancing immune responses to inactivated foot-and-mouth virus vaccine by a polysaccharide adjuvant of aqueous extracts from Artemisia rupestris L.

  • Wang, Danyang;Yang, Yu;Li, Jinyu;Wang, Bin;Zhang, Ailian
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.30.1-30.15
    • /
    • 2021
  • Background: New-generation adjuvants for foot-and-mouth disease virus (FMDV) vaccines can improve the efficacy of existing vaccines. Chinese medicinal herb polysaccharide possesses better promoting effects. Objectives: In this study, the aqueous extract from Artemisia rupestris L. (AEAR), an immunoregulatory crude polysaccharide, was utilized as the adjuvant of inactivated FMDV vaccine to explore their immune regulation roles. Methods: The mice in each group were subcutaneously injected with different vaccine formulations containing inactivated FMDV antigen adjuvanted with three doses (low, medium, and high) of AEAR or AEAR with ISA-206 adjuvant for 2 times respectively in 1 and 14 days. The variations of antibody level, lymphocyte count, and cytokine secretion in 14 to 42 days after first vaccination were monitored. Then cytotoxic T lymphocyte (CTL) response and antibody duration were measured after the second vaccination. Results: AEAR significantly induced FMDV-specific antibody titers and lymphocyte activation. AEAR at a medium dose stimulated Th1/Th2-type response through interleukin-4 and interferon-γ secreted by CD4+ T cells. Effective T lymphocyte counts were significantly elevated by AEAR. Importantly, the efficient CTL response was remarkably provoked by AEAR. Furthermore, AEAR at a low dose and ISA-206 adjuvant also synergistically promoted immune responses more significantly in immunized mice than those injected with only ISA-206 adjuvant and the stable antibody duration without body weight loss was 6 months. Conclusions: These findings suggested that AEAR had potential utility as a polysaccharide adjuvant for FMDV vaccines.

Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury

  • Mi Jeong Heo;Ji Ho Suh;Kyle L. Poulsen;Cynthia Ju;Kang Ho Kim
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.527-534
    • /
    • 2023
  • Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과 (β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells)

  • 금보람;현진이;최소희;진지영;정지우;임종민;박동찬;조광근;최은영;최인순
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan은 균류의 세포벽, 귀리, 효모, 식물의 구성물질로, 면역 세포의 활성, 전염증성 사이토카인 분비, 항암효능과 같은 면역 체계에 중요한 역할을 한다. 면역계는 건강한 몸 상태의 항상성을 유지한다. 하지만, 병원성 물질이 신체 내로 들어오게 되면 면역 항상성이 무너지게 되고, 질병이 유발될 수 있다. 따라서, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 면역 조절 효과에 이용될 수 있는지를 확인하였다. ${\beta}$-glucan은 THP-1 세포에 다양한 농도를 처리하여 배양하였으며, $TNF-{\alpha}$ mRNA 발현과 단백질 수준을 Real-time PCR와 ELISA을 이용하여 분석하였다. 또한 전사 인자 $NF-{\kappa}B$ p50와 MAPKs 신호 기작 활성을 western blot을 이용하여 분석하였다. ${\beta}$-glucan으로 유도된 MAPKs와 $NF-{\kappa}B$ p50 활성이 증가하였다. ${\beta}$-glucan이 인간 단핵구 THP-1 세포에서 $TNF-{\alpha}$ 생성에 의해 면역 증강 효과를 나타내며, 이는 MAPKs와 $NF-{\kappa}B$ p50 신호 전달을 통해 나타내는 것을 제시한다. 종합적으로, 본 연구는 ${\beta}$-glucan이 인간 단핵구 THP-1 세포를 통해 면역 체계를 향상시킬 것이라고 사료된다.

흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여 (Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts)

  • 박주휘;채종범;이준하;한동엽;남주옥
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.447-454
    • /
    • 2023
  • 인간이 살아가는 환경에는 인체에 침입하여 건강한 삶을 영위하는 것을 방해하는 다양한 항원들이 존재하며, 면역 체계는 복잡한 기전을 통하여 이를 인식하고 제거한다. 대식세포는 선천 면역체계에 관연하는 면역세포로 체내 널리 분포하고 있으며, inducible nitric oxide synthase로 유도된 산화질소, cyclooxygenase-2로 유도된 prostaglandin E2 그리고 tumor necrosis factor-alpha 등의 전염증성 사이토카인 같은 다양한 면역 조절 물질을 생산한다. 흰점박이꽃무지유충은 미래 식량 수급 문제에 대한 대안으로 등장한 식용 곤충의 일종으로, 기존 mitogen activated protein kinases 및 nuclear factor-kappa B (NF-κB) 신호전달 경로를 경유하는 RAW264.7 대식세포의 활성화를 통한 면역 조절 효과가 보고되었다. 본 연구에서는 RAW264.7 세포에서 흰점박이꽃무지유충 추출물에 의해 유도된 면역 조절 물질의 발현이 toll-like receptor 4, mitogen activated protein kinases 및 nuclear factor-kappa B 신호전달 경로의 약리학적 억제제에 의해 어떻게 변화되었는지 확인하였다. 그 결과, 흰점박이꽃무지유충 처리에 의해 증가된 면역 조절 물질의 발현이 c-Jun N-terminal kinase (JNK) 억제제 및 NF-κB 억제제 처리에 의해 감소하는 것을 확인하였다. 또한, toll-like receptor 4(TLR4) 억제제 처리에 의해서는 흰점박이꽃무지유충 추출물 처리에 의해 증가된 면역 조절 물질의 발현과 JNK 및 NF-κB의 인산화 감소를 확인하였다. 우리의 이러한 연구는 흰점박이꽃무지유충이 TLR4-JNK/NF-κB 신호전달의 관여에 의해 RAW264.7 세포를 활성화하는 것을 시사한다.

Effect of TLR4 and B7-H1 on Immune Escape of Urothelial Bladder Cancer and its Clinical Significance

  • Wang, Yong-Hua;Cao, Yan-Wei;Yang, Xue-Cheng;Niu, Hai-Tao;Sun, Li-Jiang;Wang, Xin-Sheng;Liu, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1321-1326
    • /
    • 2014
  • Background/Aim: Toll-like receptor 4 (TLR4) and B7-H1, both normally expressed restricted to immune cells, are found to be aberrantly expressed in a majority of human tumors and may play important roles in regulation of tumor immunity. It has been shown that urothelial bladder cancer (UBC) patients can manifest tumoral immune escape which may be a potential critical factor in tumor pathogenesis and progression. However, so far, the mechanisms of UBC-related immune escape have not been clarified. The aim of this study was to investigate the effect of TLR4 and B7-H1 on immune escape of UBC. Methods: Bladder cancer T24 cells were pre-incubated with LPS and co-cultured with tumor specific CTLs. CTL cytotoxicity and apoptosis rates were measured by MTT assay and flow cytometry, respectively. The effects of an ERK inhibitor on B7-H1 expression and CTL cytotoxicity against T24 cells were also evaluated. In addition, TLR4, B7-H1 and PD-1 protein expression was analyzed by immunohistochemistry in 60 UBC specimens and 10 normal urothelia. Results: TLR4 activation protected T24 cells from CTL killing via B7-H1 overexpression. However PD98059, an inhibitor of ERK, enhanced CTL killing of T24 cells by reducing B7-H1 expression. TLR4 expression was generally decreased in UBC specimens, while B7-H1 and PD-1 were greatly overexpressed. Moreover, expression of both B7-H1 and PD-1 was significantly associated with UICC stage and WHO grade classification. Conclusions: TLR4 and B7-H1 may contribute to immune escape of UBC. Targeting B7-H1 or the ERK pathway may offer new immunotherapy strategies for bladder cancer.

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

월계화 추출물의 면역억제 효능 연구 (Study on Immunosuppressive Effects of Rosa Chinensis Jacq. Extract)

  • 김경신;박재원;채순기;강정수;김병수
    • 동의생리병리학회지
    • /
    • 제25권3호
    • /
    • pp.459-465
    • /
    • 2011
  • The nuclear factor of activated T cells (NFAT) protein induces transcriptions of cytokine genes including IL-2 for T-cell activation. Normally activation of NFAT is important to induce immune responses but excessive NFAT activation provokes immunopathological reactions such as autoimmunity, transplant rejection, and inflammation. Thus, for the treatment of autoimmune diseases drugs repressing the activation of NFAT have been searched. In this study, immnunosuppressive effects of Rosa chinensis Jacq. extracts identified as a potent NFAT inhibitor from a natural product library were examined. NFAT reporter assay, MTS assay, real time PCR, IL-2 ELISA, MLR, and FACS (Fluorescent Activated Cell Sorting) were used to measure inhibitory immunocyte activities of Rosa chinensis Jacq. The variety of natural products have been screened and some were found to show inhibitory activities against the NFAT transcription factor. Among them, extract of Rosa chinensis Jacq. showed an strong inhibitory effect on the activation of NFAT without affecting cell viability. Levels of IL-2 transcripts as well as IL-2 protein were decreased with treatment of Rosa chinensis Jacq. extract. In addition, immunosuppressive activity of Rosa chinensis Jacq. extract was exhibited in the mixed leukocytes reaction. The increasement of CD4+CD25+ (Treg) immunocyte was also detected in the analysis using FACS after applying Rosa chinensis Jacq. extract. Immunosuppressive effects of the Rosa chinensis Jacq. extracts were clearly demonstrated in the present study. In addition, Rosa chinensis Jacq. extract also positively affected regulatory T cell induction. Further investigations in particular on purification of single substance responsible for the immunosuppressive effects from the extract and analysis on possible actions of the extract in interfering cell signaling and cytokine production will be needed.

Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome

  • Han, Byung-Cheol;Ahn, Huijeong;Lee, Jiseon;Jeon, Eunsaem;Seo, Sanghoon;Jang, Kyoung Hwa;Lee, Seung-Ho;Kim, Cheon Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.513-523
    • /
    • 2017
  • Background: Korean Red Ginseng extracts (RGE) have been suggested as effective immune modulators, and we reported that ginsenosides possess anti-inflammasome properties. However, the properties of nonsaponin components of RGE have not been well studied. Methods: To assess the roles of nonsaponin fractions (NS) in NLRP3 inflammasome activation, we treated murine macrophages with or without first or second inflammasome activation signals with RGE, NS, or saponin fractions (SF). The first signal was nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$)-mediated transcription of pro-interleukin (IL)-$1{\beta}$ and NLRP3 while the second signal triggered assembly of inflammasome components, leading to IL-$1{\beta}$ maturation. In addition, we examined the role of NS in IL-6 production and IL-$1{\beta}$ maturation in mice. Results: NS induced IL-$1{\beta}$ and NLRP3 transcription via toll-like receptor 4 signaling, whereas SF blocked expression. During the second signal, SF attenuated NLRP3 inflammasome activation while NS did not. Further, NS-injected mice presented increased IL-$1{\beta}$ maturation and IL-6 production. Conclusion: SF and NS of RGE play differential roles in the NLRP3 inflammasome activation. Hence, RGE can be suggested as an NLRP3 inflammasome modulator.