• 제목/요약/키워드: immune activation

검색결과 947건 처리시간 0.028초

Identification of a Variant Form of Cellular Inhibitor of Apoptosis Protein (c-IAP2) That Contains a Disrupted Ring Domain

  • Park, Sun-Mi;Kim, Ji-Su;Park, Ji-Hyun;Kang, Seung-Goo;Lee, Tae Ho
    • IMMUNE NETWORK
    • /
    • 제2권3호
    • /
    • pp.137-141
    • /
    • 2002
  • Among the members of the inhibitor of apoptosis (IAP) protein family, only Livin and survivin have been reported to have variant forms. We have found a variant form of c-IAP2 through the interaction with the X protein of HBV using the yeast two-hybrid system. In contrast to the wild-type c-IAP2, the variant form has two stretches of sequence in the RING domain that are repeated in the C-terminus that would disrupt the RING domain. We demonstrate that the variant form has an inhibitory effect on TNF-mediated $NF-{\kappa}B$ activation unlike the wild-type c-IAP2, which increases TNFmediated $NF-{\kappa}B$ activation. These results suggest that this variant form has different activities from the wild-type and the RING domain may be involved in the regulation of TNF-induced $NF-{\kappa}B$ activation.

류마티스양 관절염 환자 활막 T 세포의 T 세포수용체 β쇄 분석 (Usage of T Cell Receptor Repertoire is Restricted in Synovial Lymphocytes in Rheumatoid Arthritis)

  • 권대호;이수곤;김세종;최인홍
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.70-76
    • /
    • 2001
  • Background: Rheumatoid arthritis is an autoimmune disease characterized by a chronic inflammatory process, primarily involving the synovial membrane of peripheral j oints, where T cell activation is found. To address the superantigen stimulation in rheumatoid arthritis, T cell clonality and the expression of activation markers were analyzed. Methods: To detect TCRB V usage, inverse PCR and sequencing were done. Monoclonal antibodies were used for flow cytometric analysis of TCRBV8 or TCRBV5. As results, a restricted usage of TCRBV3 gene was detected in synovial lymphocytes from one rheumatoid arthritis patient. However, preferential usage for TCRB V8, which may be one indicator for stimulation by staphylococcal superantigen, was not obvious although general activation of T cells was found as high DR+ percentage in synovial T cells. These data show specific antigen rather than superantigen might involve the pathogenesis of rheumatoid arthritis.

  • PDF

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • ;;;;;윤형선
    • 대한의생명과학회지
    • /
    • 제16권1호
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

LIGHT is Expressed in Foam Cells and Involved in Destabilization of Atherosclerotic Plaques through Induction of Matrix Metalloproteinase-9 and IL-8

  • Kim, Won-Jung;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.116-122
    • /
    • 2004
  • Background: LIGHT (TNFSF14) is a member of tumor necrosis factor superfamily and is the ligand for TR2 (TNFRSF14/HVEM). LIGHT is known to have proinflammatory roles in atherosclerosis. Methods: To find out the expression pattern of LIGHT in atherosclerotic plaques, immunohistochemical analysis was performed on human carotid atherosclerotic plaque specimens. LIGHT induced atherogenic events using human monocytic cell line THP-1 were also investigated. Results: Immunohistochemical analysis revealed expression of LIGHT and TR2 in foam cell rich regions in the atherosclerotic plaques. Double immunohistochemical analysis further confirmed the expression of LIGHT in foam cells. Stimulation of THP-1 cells, which express TR2, with either recombinant LIGHT or immobilized anti-TR2 monoclonal antibody induced interleukin-8 and matrix metalloproteinase(MMP)-9. Electrophoretic mobility shift assay demonstrated that LIGHT induces nuclear localization of transcription factor, nuclear factor $(NF)-{\kappa}B$. LIGHT induced activation of MMP-9 is mediated by $NF-{\kappa}B$, since treatment of THP-1 cells with the $NF-{\kappa}B$ inhibitor PDTC (pyrrolidine dithiocarbamate) completely blocked the activation of MMP-9. Conclusion: These data indicate that LIGHT is expressed in foam cells in atherosclerotic plaques and is involved in atherogenesis through activation of pro-atherogenic cytokine IL-8 and destabilization of plaque by inducing matrix degrading enzyme.

Immunomodulatory Effects of ZYM-201 on LPS-stimulated B Cells

  • Lee, Ye Eun;Kim, Soochan;Jung, Woong-Jae;Lee, Hyung Soo;Kim, Mi-Yeon
    • IMMUNE NETWORK
    • /
    • 제14권5호
    • /
    • pp.260-264
    • /
    • 2014
  • ZYM-201 is a methyl ester of triterpenoid glycoside from Sanguisorba officinalis which has been used for treatment of inflammatory and metabolic diseases. In this study, immunomodulatory effects of ZYM-201 on B cells were examined in vitro and in vivo. When splenocytes were activated with lipopolysaccharide (LPS), the major population which had shown an increase in cell numbers was B cells. However, when the B cells were treated with ZYM-201 after LPS activation, their cell numbers and the expression of major costimulatory molecules, CD80 and CD86, were decreased. Furthermore, the effect of LPS, which induces activation of NF-${\kappa}B$, was abolished by ZYM-201: LPS-stimulated B cells showed decrease of phosphorylation after treatment of ZYM-201. The same results were shown in vivo experiments. These results suggest that ZYM-201 may play a role in the modulation of inflammatory responses through inhibiting NF-${\kappa}B$ activation and downregulating the expression of costimulatory molecules on B cells.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S.;Ryter, Stefan W.
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.441-448
    • /
    • 2014
  • Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

산돌배(Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee) 열매의 대식세포 활성화 유도 활성 (Effect of Fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on Macrophage Activation)

  • 금나경;정진부
    • 한국자원식물학회지
    • /
    • 제34권4호
    • /
    • pp.377-383
    • /
    • 2021
  • 이상의 연구 결과로 미루어 볼 때, 산돌배 열매추출물은 대식세포에서 TLR2와 TLR4를 자극하여 MAPKs 신호전달을 활성화하여 NO, iNOS, IL-1𝛽, IL-6 및 TNF-α와 같은 면역증진 인자의 생성을 유도하고, 대식세포의 포식작용을 활성화시키는 것으로 판단된다. 따라서 산돌배 추출물은 대식세포의 활성화를 통해 인체의 면역시스템을 강화할 수 있으므로, 향후 면역 보조제나 면역증진을 위한 기능성 식의약품 개발을 위한 소재로 활용이 가능할 것으로 생각한다.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

Immunostimulatory Activity of Paeonia lactiflora in Mouse Macrophages, RAW264.7 Cells

  • Ju-Hyeong Yu;So Jeong Park;Jin Hee Woo;Na Rae Shin;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.89-89
    • /
    • 2022
  • Paeonia lactiflora (P. lactiflora) is a medicinal plant widely used for treating inflammatory diseases. However, P. lactiflora has been recently reported to increase the production of proinflammatory mediators and activates phagocytosis in macrophages. Thus, in this study, we tried to verify the macrophage activation of Paeoniae Radix Alba (PRR, also known as red peony root) and elucidate its mechanism of action. PRR upregulated the production of proinflammatory mediators and activated phagocytosis in RAW264.7 cells. However, these effects were reversed by inhibition of TLR2/4. In addition, the inhibition of p38, JNK, and ERK1/2 reduced the PRR-mediated production of proinflammatory mediators, and the SPL-mediated activation of p38, JNK, and ERK1/2 was blocked by the TLR4 inhibition. These findings indicate that PRR may activate macrophages through TLR4-dependent activation of p38, JNK, and ERK1/2. These indicate that PRR has immunostimulatory activity. Thus, it is believed that PRR can be used as a functional food agent that enhances the immune system.

  • PDF