Browse > Article
http://dx.doi.org/10.4110/in.2014.14.5.260

Immunomodulatory Effects of ZYM-201 on LPS-stimulated B Cells  

Lee, Ye Eun (Department of Bioinformatics and Life Science, Soongsil University)
Kim, Soochan (Department of Bioinformatics and Life Science, Soongsil University)
Jung, Woong-Jae (Department of Bioinformatics and Life Science, Soongsil University)
Lee, Hyung Soo (Department of Bioinformatics and Life Science, Soongsil University)
Kim, Mi-Yeon (Department of Bioinformatics and Life Science, Soongsil University)
Publication Information
IMMUNE NETWORK / v.14, no.5, 2014 , pp. 260-264 More about this Journal
Abstract
ZYM-201 is a methyl ester of triterpenoid glycoside from Sanguisorba officinalis which has been used for treatment of inflammatory and metabolic diseases. In this study, immunomodulatory effects of ZYM-201 on B cells were examined in vitro and in vivo. When splenocytes were activated with lipopolysaccharide (LPS), the major population which had shown an increase in cell numbers was B cells. However, when the B cells were treated with ZYM-201 after LPS activation, their cell numbers and the expression of major costimulatory molecules, CD80 and CD86, were decreased. Furthermore, the effect of LPS, which induces activation of NF-${\kappa}B$, was abolished by ZYM-201: LPS-stimulated B cells showed decrease of phosphorylation after treatment of ZYM-201. The same results were shown in vivo experiments. These results suggest that ZYM-201 may play a role in the modulation of inflammatory responses through inhibiting NF-${\kappa}B$ activation and downregulating the expression of costimulatory molecules on B cells.
Keywords
ZYM-201; B cell; Inflammation; LPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 East, J. 1955. The effect of certain plant preparations on the fertility of laboratory mammals. 4. Sanguisorba officinalis L. J. Endocrinol. 12: 273-276.   DOI   ScienceOn
2 Park, K. H., D. Koh, K. Kim, J. Park, and Y. Lim. 2004. Antiallergic activity of a disaccharide isolated from Sanguisorba officinalis. Phytother. Res. 18: 658-662.   DOI   ScienceOn
3 Goun, E. A., V. M. Petrichenko, S. U. Solodnikov, T. V. Suhinina, M. A. Kline, G. Cunningham, C. Nguyen, and H. Miles. 2002. Anticancer and antithrombin activity of Russian plants. J. Ethnopharmacol. 81: 337-342.   DOI   ScienceOn
4 Kim, Y. H., C. B. Chung, J. G. Kim, K. I. Ko, S. H. Park, J. H. Kim, S. Y. Eom, Y. S. Kim, Y. I. Hwang, and K. H. Kim. 2008. Anti-wrinkle activity of ziyuglycoside I isolated from a Sanguisorba officinalis root extract and its application as a cosmeceutical ingredient. Biosci. Biotechnol. Biochem. 72: 303-311.   DOI   ScienceOn
5 Wang, Z., W. T. Loo, N. Wang, L. W. Chow, D. Wang, F. Han, X. Zheng, and J. P. Chen. 2012. Effect of Sanguisorba officinalis L on breast cancer growth and angiogenesis. Expert Opin. Ther. Targets 16 Suppl 1: S79-89.   DOI   ScienceOn
6 Tsukahara, K., S. Moriwaki, T. Fujimura, and Y. Takema. 2001. Inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet-B-induced photodamage of rat skin. Biol. Pharm. Bull. 24: 998-1003.   DOI   ScienceOn
7 Liu, X., Y. Cui, Q. Yu, and B. Yu. 2005. Triterpenoids from Sanguisorba officinalis. Phytochemistry 66: 1671-1679.   DOI   ScienceOn
8 Mimaki, Y., M. Fukushima, A. Yokosuka, Y. Sashida, S. Furuya, and H. Sakagami. 2001. Triterpene glycosides from the roots of Sanguisorba officinalis. Phytochemistry 57: 773-779.   DOI   ScienceOn
9 Cho, J. Y., E. S. Yoo, B. C. Cha, H. J. Park, M. H. Rhee, and Y. N. Han. 2006. The inhibitory effect of triterpenoid glycosides originating from Sanguisorba officinalis on tissue factor activity and the production of TNF-alpha. Planta Med. 72: 1279-1284.   DOI   ScienceOn
10 Choi, J., M. Y. Kim, B. C. Cha, E. S. Yoo, K. Yoon, J. Lee, H. S. Rho, S. Y. Kim, and J. Y. Cho. 2012. ZYM-201 sodium succinate ameliorates streptozotocin-induced hyperlipidemic conditions. Planta Med. 78: 12-17.   DOI   ScienceOn
11 Choi, J., T. Yu, B. C. Cha, M. H. Rhee, E. S. Yoo, M. Y. Kim, J. Lee, and J. Y. Cho. 2011. Modulatory effects of ZYM-201 sodium succinate on dietary-induced hyperlipidemic conditions. Pharmazie 66: 791-797.
12 Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151.   DOI   ScienceOn
13 Akira, S., and S. Sato. 2003. Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis. 35: 555-562.   DOI   ScienceOn
14 Suvas, S., V. Singh, S. Sahdev, H. Vohra, and J. N. Agrewala. 2002. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J. Biol. Chem. 277: 7766-7775.   DOI   ScienceOn
15 Ogata, H., I. Su, K. Miyake, Y. Nagai, S. Akashi, I. Mecklenbrauker, K. Rajewsky, M. Kimoto, and A. Tarakhovsky. 2000. The toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192: 23-29.   DOI   ScienceOn
16 Pierce, J. W., M. A. Read, H. Ding, F. W. Luscinskas, and T. Collins. 1996. Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immunol. 156: 3961-3969.
17 Collins, A. V., D. W. Brodie, R. J. Gilbert, A. Iaboni, R. Manso-Sancho, B. Walse, D. I. Stuart, P. A. van der Merwe, and S. J. Davis. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201-210.   DOI   ScienceOn
18 Giannoukakis, N., C. A. Bonham, S. Qian, Z. Chen, L. Peng, J. Harnaha, W. Li, A. W. Thomson, J. J. Fung, P. D. Robbins, and L. Lu. 2000. Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol. Ther. 1: 430-437.   DOI   ScienceOn
19 Viatour, P., M. P. Merville, V. Bours, and A. Chariot. 2005. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52.   DOI   ScienceOn
20 Yin, M. J., Y. Yamamoto, and R. B. Gaynor. 1998. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396: 77-80.   DOI   ScienceOn
21 Yamamoto, Y., and R. B. Gaynor. 2001. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107: 135-142.   DOI   ScienceOn
22 Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J. Clin. Invest. 107: 13-19.   DOI   ScienceOn
23 Ban, J. Y., H. T. Nguyen, H. J. Lee, S. O. Cho, H. S. Ju, J. Y. Kim, K. Bae, K. S. Song, and Y. H. Seong. 2008. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25--35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 31: 149-153.   DOI   ScienceOn
24 Alexander, C., and E. T. Rietschel. 2001. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7: 167-202.
25 Buss, H., A. Dorrie, M. L. Schmitz, E. Hoffmann, K. Resch, and M. Kracht. 2004. Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J. Biol. Chem. 279: 55633-55643.   DOI   ScienceOn