• Title/Summary/Keyword: immobilization media

Search Result 46, Processing Time 0.028 seconds

A study on the Preparation Methods of the Immobilized Encapsulation PVA-media for Wastewater Treatment (포괄고정화 PVA-gel의 물리적 특성 연구)

  • Lee, Eun-Woo;Chang, In-Soung;Chung, Son-Young;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.116-121
    • /
    • 2005
  • Immobilization technique by PVA encapsulation is an effective alternative for wastewater treatment. However little information is available about the effect of PVA characteristics on physical properties as an encapsulation media. This study aims at investigating the effect of the preparation methods of PVA and filler addition to media on the solubility of PVA. The solubility decreased as the freezing temperature decreased and the vacuum-drying was applied. Addition of the PAC (Powered Activated Carbon) and organoclay decreased the solubility of the PVA gels. Organoclay was more effective for lowering the solubility about 25% than the PAC. Nitrification with the PVA-coating media was less sufficient than with the polyurethane media due to the mass transfer restriction for oxygen and nutrients.

  • PDF

Study of Inorganic Photocatalyst Media for Reused Wastewater (폐수 재이용을 위한 무기계 광촉매 담체 연구)

  • Lee, Gyuyoung;Kim, Jungchul;Lim, Jihyun;Lee, Junwoo;Park, Jeongmi;Lee, Seunghun;Nam, Jukyung;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • This study focused on effective decomposition methods for low concentrated organic compounds from the reuse of industrial wastewater, and confirmed the possibility through photocatalyst media. Photocatalyst immobilized media was developed to carry on this experiment which confirmed the removal possibility of low concentrated organic compounds. Considering the stability and efficiency of photocatalyst immobilization, inorganic support, hollow bead, and $TiO_2$ nano powder were used. As a result of the removal experiment, the removal efficiencies of acetonitrile, ethanol, IPA(Isopropyl alcohol), methanol were above 75% after 15 minutes while those of acetone, acetaldehyde, urea were 10%, 45%, 20%, respectively after 60 minutes. If further studies were made to increase the surface area of the photocatalyst immobilized media, the efficiency of the removal of low concentrated organic compounds can be improved and this solution can also be used in an actual treatment process.

Stabile Fermentation of Citric Acid Using Immobilized Saccharomycopsis lipolytica

  • Kim, Eun-Ki;Ronnie S. Roberts
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.130-135
    • /
    • 1991
  • The effects of media composition on citric acid fermentation using surface immobilized Saccharomycopsis lipolytica were studied. The use of the standard medium for these organisms resulted in rapid decrease of citric acid production and a transformation of immobilized cell morphologies from a yeast-type to a mycelium-type. When the standard medium was enriched with vitamins, trace minerals, a growth factor and ammonium to form a Vigorous Stationary Phase (VSP) fermentation type medium, relatively stable citric acid production (10 mg/lㆍh) was obtained. Using the VSP type medium, the surface immobilized cells also retained their yeast-type form.

  • PDF

Treatment of Acid dye Using Microbial Immobilization (미생물 고정화를 이용한 산성염료의 처리)

  • 김정목;조무환;양용운
    • Textile Coloration and Finishing
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 1999
  • Strains degrading and decolorizing acid dyes, Nylosan red E-BL 150%. were isolated from natural system, was named as ARK3. The optimal culture conditions of temperature and pH were $35^\circ{C}$, 7.0, respectively. Growth rate of cells in conditions of aerobic shaking more than standing culture conspicuously increased, and optical density of those to strain ARK3 were found as 1.38 and 0.25 after 42 hrs. Decolorization efficiency in batch culture which used as immobilization media to natural zeolite was 15% after 6 hrs, while suspension culture was 5%, also its of immobilization and suspension culture were 90% and 85% after 48 hrs, respectively. Decolorization efficiency of air-lift bioreactor was more than 90% to a dilution rate of $0.038hr^{-1}$, but that was decreased as 70%, when the dilution rate was $0.05hr^{-1}$. Even though at maximum dilution rate of this study, there was not appeared "wash out" phenomienon of biomass. Decolorization efficiency was 97.7% at a dilution rate of $0.025hr^{-1}$, when influent dye concentration was $100mg/\ell$. But if influent dye concentration increased as $150mg/\ell$, even though MLVSS increased, that of treatment water decreased as 93%. Also, when influent dye concentration increased as $200mg/\ell$ and $300mg/\ell$, decolorization efficiencies of treatment water abruptly decreased as 85% and 63%, respectively. Decolorization efficiency was more than 92% to the limit volumetric loading rate of $3.75mg/\ell\cdot{hr}$hr, without regard to variation of influent dye concentration or hydraulic retention time. if volumetric loading rate was more than $3.80mg/\ell\cdot{hr}$, at same condition, decolorization efficiency was lower decrease of retention time than increase of influent dye concentration.entration.

  • PDF

Development of Magnetically Separable Immobilized Trypsin (자석에 의해 분리가 가능한 고정화 Trypsin 개발)

  • Ryu, Ji-Soon;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.350-354
    • /
    • 2008
  • Magnetically separable immobilized trypsin was developed and their biocatalytic activity was evaluated for the different immobilization media. The activity, recyclability, pH effect, and stability of immobilized enzymes were evaluated for the different supporting media. The biocatalytic activity of immobilized trypsin was highest with magnetically separable polyaniline (PAMP), and Vm and Km of PAMP were 0.169 mM/min and 0.263 mM respectively. With increasedpH, the biocatalytic activity increased for all supporting materials used. Immobilized enzymes were recycled and recycle activities were over 90% of their original activity after ten times reuse. The operational stabilities of enzymes were greatly improved with enzyme immobilization.

Studies on the Immobilized Whole-cell Enzyme of Arthrobacter simplamide Polymer

  • Kim, Doo-Ha;Lee, J.S.;Ryu, D.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.207.2-207
    • /
    • 1978
  • Arthrobacter simplex (ATCC 6946) was cultured, induced and immobilized in acrylamide polymer. The characteristics of the immobilized whole-cell enayme were studied using hydrocortisone as the substrate. The enzyme activity was increased during the incubation of the gel particle in 0.5% peptone media. The ennzyme reaction kinetics of the Δ'-dehydrogenase (3-oxosteroid Δ'-oxydo reductase, E. C. 1.3.99.4) foliowed the Michaelis-Menten type. Km and Vm values were different significantly after immobilization of the cell. The optimum pH and temperature were changed, too. Nitrogen sources such as casitone, peptone or tryptone were good media for the enzyme reaction. And there was no need to add cofactors of the enzyme in the pre-sence of energy sources used in the test. The effect of metal ions on the enzyme activity was insignificant. Organic solvents were used increase the substrate concentration and there was no optimum solvent concentration depending on the substrate concentration.

  • PDF

Survival of Bifidobacterium breve in Acidic Solutions and Yogurt, Following Immobilization in Calcium Alginate Beads

  • Lee, Ki-Yong;Kim, Ji-Youn;Yu, Won-Kyu;Lee, Yoon-Jong;Yoon, Sung-Sik;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.412-417
    • /
    • 2001
  • Sodium alginate was used to immobilize Bifidobacterium breve ATCC 15700 cells. The ability of the Ca-alginate beads to protect the B. breve ATCC 15700 was evaluated under different conditions including alginate concentration, bead size, pH, hydrogen peroxide, and storage period. The survival of the B. Breve ATCC 15700 was estimated in pasteurized yogurt, containing either the immobilized or free cells, throughout the storage period. The survival cells in bead after exposure to acidic solution (pH 3.0) increased with increase of both the alginate gel concentration and bead size. Also, immobilized cells in alginate bead were more resistant than the free cells to hydrogen peroxide, storage period, and the environment inside yogur. When retreated beads with skim milk and nonretreated beads were tested in acidified pH 3.0 TPY media including acetic and lactic acid, the number of viable cells in the retreated bead was approximately 10-fold higher than that of nonretreated beads. This suggests that the skim milk operated as a material decreasing the diffusion of acid and hydrogen perosicde into alginate gels. From this research, it was found that yogurt itself supported immobilized cells with an improved protection from the extreme acidity in yogurt.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Development of Continuous Beer Maturation Precess Using Immobilized Yeast (고정화 효모를 이용한 맥주의 연속 숙성공정 개발)

  • 박상재;이율락;김상호;최차용
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.438-443
    • /
    • 2000
  • Continuous processes using immobilized yeast were investigated in order to shorten beer maturation time. Three silica-based ceramic media and one cellulose-based medium were used. Diacetyl (DA) was one of the most distinctive compounds causing immature flavors. Heat treatment of green beer (GB) to convert a-acetolactate to DA was essential to shorten the time for beer maturation. The longer heat treatment time was needed at the lower temperature. Oxygen concentration in GB had a large influence on the conversion of a-acetolactate to DA. The lower the oxygen concentration in GB, the lower conversion ratio to DA. Heat treated GB was fed continuously to four kinds of immobilized yeast columns. DA concentration after immobilization columns was reduced to less than 0.1ppm at $3∼5^{\circ}C$ 180∼150 minutes retention time in all columns tested. This concentration is enough to fit the quality speification of commercialized product. Formation of a-acetolactate from residual sugars was higher in ceramic media column than cellulose media cloumn. The taste of beers from test processes were not the same as that of traditionally produced beer, but no off-flavors were detected in test samples, which shows that immobilized yeast columns have potentials as rapid processes for beer maturation.

  • PDF

Enhancing the Physical Properties and Lifespan of Bacterial Quorum Quenching Media through Combination of Ionic Cross-Linking and Dehydration

  • Lee, Sang Hyun;Lee, Seonki;Lee, Kibaek;Nahm, Chang Hyun;Jo, Sung-Jun;Lee, Jaewoo;Choo, Kwang-Ho;Lee, Jung-Kee;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.552-560
    • /
    • 2017
  • Quorum quenching (QQ) bacteria entrapped in a polymeric composite hydrogel (QQ medium) have been successfully applied in membrane bioreactors (MBRs) for effective biofouling control. However, in order to bring QQ technology closer to practice, the physical strength and lifetime of QQ media should be improved. In this study, enforcement of physical strength, as well as an extension of the lifetime of a previously reported QQ bacteria entrapping hollow cylinder (QQ-HC), was sought by adding a dehydration procedure following the cross-linking of the polymeric hydrogel by inorganic compounds like $Ca^{2+}$ and boric acid. Such prepared medium demonstrated enhanced physical strength possibly through an increased degree of physical cross-linking. As a result, a longer lifetime of QQ-HCs was confirmed, which led to improved biofouling mitigation performance of QQ-HC in an MBR. Furthermore, QQ-HCs stored under dehydrated condition showed higher QQ activity when the storage time lasted more than 90 days owing to enhanced cell viability. In addition, the dormant QQ activity after the dehydration step could be easily restored through reactivation with real wastewater, and the reduced weight of the dehydrated media is expected to make handling and transportation of QQ media highly convenient and economical in practice.