Development of Magnetically Separable Immobilized Trypsin

자석에 의해 분리가 가능한 고정화 Trypsin 개발

  • Ryu, Ji-Soon (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Lee, Jung-Heon (Department of Chemical and Biochemical Engineering, Chosun University)
  • 류지순 (조선대학교 생명화학공학과) ;
  • 이중헌 (조선대학교 생명화학공학과)
  • Published : 2008.08.29

Abstract

Magnetically separable immobilized trypsin was developed and their biocatalytic activity was evaluated for the different immobilization media. The activity, recyclability, pH effect, and stability of immobilized enzymes were evaluated for the different supporting media. The biocatalytic activity of immobilized trypsin was highest with magnetically separable polyaniline (PAMP), and Vm and Km of PAMP were 0.169 mM/min and 0.263 mM respectively. With increasedpH, the biocatalytic activity increased for all supporting materials used. Immobilized enzymes were recycled and recycle activities were over 90% of their original activity after ten times reuse. The operational stabilities of enzymes were greatly improved with enzyme immobilization.

본 연구에서는 나노담체를 이용하여 효소를 고정화 하였으며 고정화 효소의 활성도, 재사용 가능성, pH 영향 및 시간에 따른 안정성을 검토하였다. 고정화 효소의 활성도는 PAMP를 사용한 경우 가장 빠른 것으로 나타났으며 이때 Vm값은 0.169 mM/min였고 Km값은 0.263 mM 이었다. 이는 PS/PSMA를 사용한 경우보다 2배 이상의 효소 반응속도 향상을 보여주었다. 그림을 통하여 효소의 재활용가능성을 제시하였으며 여러 번 재사용한 경우에도 활성도를 잃지 않고 유지하였다. 고정화한 트립신은 공통적으로 pH증가에 따라 활성도가 증가하였으며 PAMP, PANI, DEAE, CMC, PS/PSMA 순으로 활성도가 높음을 확인 할 수 있었다. 트립신이 자체 효소를 분해하는 특성을 고려할 때 고정화 되지 않은 트립신의 안정성은 매우 낮게 된다. 본 연구에서 사용된 담체 중에 크기가 아주 작은 담체인 PAMP와 PANI의 경우에는 활성도가 급격히 감소하는 현상을 보였으나 비교적 크기가 큰 다른 담체의 경우에는 고정화 효소의 안정성이 우수한 것으로 나타났다.

Keywords

References

  1. Barrett, J., Brophy, P. M., and Hamilton, J. V. (2005), Analysing proteomic data. International Journal for Parasitology 35, 543 https://doi.org/10.1016/j.ijpara.2005.01.013
  2. Stults, J. T., Arnott, D., and Burlingame, A. L. (2005), Proteomics. In Methods in Enzymology. p245, Academic Press
  3. Mitsui, K., Doi, H., Nukina, N., and Indu Kheterpal and Ronald, W. (2006) Proteomics of Polyglutamine Aggregates. In Methods in Enzymology pp63-76, Academic Press
  4. Ota, S., Miyazaki, S., Matsuoka, H., Morisato, K., Shintani, Y., and Nakanishi, K. (2007), High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. Journal of Biochemical and Biophysical Methods 70, 57-62 https://doi.org/10.1016/j.jbbm.2006.10.005
  5. Zhang, K., Wu, S., Tang, X., Kaiser, N. K., and Bruce, J. E. (2007), A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research. Journal of Chromatography B 849, 223-230 https://doi.org/10.1016/j.jchromb.2006.11.029
  6. Kong, X., Zhou, H., and Qian, H. (2007), Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry 101, 615-620 https://doi.org/10.1016/j.foodchem.2006.01.057
  7. Ringseis, R., Matthes, B., Lehmann, V., Becker, K., Schops, R., Ulbrich-Hofmann, R., and Eder, K. (2005), Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1721, 89-97 https://doi.org/10.1016/j.bbagen.2004.10.005
  8. Gibbs, B. F., Zougman, A., Masse, R., and Mulligan, C. (2004), Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 37, 123-131 https://doi.org/10.1016/j.foodres.2003.09.010
  9. Kim, J., Lee, J., Na, H. B., Kim, B. C., Youn, J. K., Kwak, J. H., Moon, K., Lee, E., Kim, J., Park, J., Dohnalkova, A., Park, H. G., Gu, M. B., Chang, H. N., Grate, J. W., and Hyeon, T. (2005), A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 1, 1203-1207 https://doi.org/10.1002/smll.200500245
  10. Lee, J., Kim, J., Kim, J., Jia, H. F., Kim, M. I., Kwak, J. H., Jin, S. M., Dohnalkova, A., Park, H. G., Chang, H. N., Wang, P., Grate, J. W., and Hyeon, T. (2005), Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. Small 1, 744-753
  11. Kim, B. C., Nair, S., Kim, J., Kwak, J. H., Grate, J. W., Kim, S. H., and Gu, M. B. (2005), Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16, S382-S388 https://doi.org/10.1088/0957-4484/16/7/011
  12. Gupta, A. K. and Gupta, M. (2005), Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021 https://doi.org/10.1016/j.biomaterials.2004.10.012
  13. Simonian, A. L., Good, T. A., Wang, S. S., and Wild, J. R. (2005), Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta 534, 69-77 https://doi.org/10.1016/j.aca.2004.06.056
  14. Kim, J. and Grate, J. W. (2003), Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Letters 3, 1219-1222 https://doi.org/10.1021/nl034404b