• Title/Summary/Keyword: imaging algorithms

Search Result 304, Processing Time 0.024 seconds

Artificial Intelligence in Gastric Cancer Imaging With Emphasis on Diagnostic Imaging and Body Morphometry

  • Kyung Won Kim;Jimi Huh ;Bushra Urooj ;Jeongjin Lee ;Jinseok Lee ;In-Seob Lee ;Hyesun Park ;Seongwon Na ;Yousun Ko
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.388-399
    • /
    • 2023
  • Gastric cancer remains a significant global health concern, coercing the need for advancements in imaging techniques for ensuring accurate diagnosis and effective treatment planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, particularly for diagnostic imaging and body morphometry. This review article offers a comprehensive overview of the recent developments and applications of AI in gastric cancer imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of patient management. Additionally, we explored the application of AI body morphometry specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization holds significant promise for understanding postoperative changes and optimizing patient outcomes. Furthermore, we examine the current state of AI techniques for the prognosis of patients with gastric cancer. These prognostic models leverage AI algorithms to predict long-term survival outcomes and assist clinicians in making informed treatment decisions. However, the implementation of AI techniques for gastric cancer imaging has several limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge technologies into routine clinical practice, ultimately improving patient care and outcomes in the fight against gastric cancer.

Principles and Medical Applications of Biomedical Photoacoustic Tomography (의료용 광음향 단층촬영 원리와 의학적 응용)

  • Song, Chul-Gyu;Ryu, Sang-Hun;Kim, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1209-1214
    • /
    • 2011
  • Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This paper provides a brief recap of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities as well as translational research topics. A primary PA application in biomedicine is photoacoustic tomography (PAT). The past decade has seen fast developments in both theoretical reconstruction algorithms and innovative imaging techniques, and PAT has been implemented in imaging different tissues, from centimeter-large breast tumors to several micrometer-large single red blood cels (RBC). PAT now provides structural, functional and molecular imaging. Overall, PA techniques for biomedicine are maturing. They have been widely used to study both animal and human tissues. Recently, more and more research focuses on clinical applications. Commercialized PA systems are expected to be available in the near future, and wide clinical PA applications are foreseen.

Artificial Intelligence Based Medical Imaging: An Overview (AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰)

  • Hong, Jun-Yong;Park, Sang Hyun;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters (다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구)

  • Park, Sung-Woo;Lee, Jong-In;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.765-771
    • /
    • 2019
  • Noise in skull X-ray imaging is inevitable, which reduces imaging quality and diagnostic accuracy and increases errors due to the nature of digital imaging devices. Increasing the dose can attenuate noise, but that could lead to big problems with higher exposure dose received by patients. Thus, noise reduction algorithms are actively being studied at low doses to solve dose problems and reduce noise at the same time. Wiener filter and median filter have been widely used, with the disadvantages of poor noise reduction efficiency and loss of much information about imaging boundary. The purpose of this study is to apply total variation (TV) algorithm to skull X-ray imaging that can compensate for the problems of previous noise reduction efficiency to assess quantitatively and compare them. For this study, skull X-ray imaging is obtained using various kVp and mAs using the skull phantom using the X-ray device of Siemens. In addition, contrast to noise ratio (CNR) and coefficient of variation (COV) are compared and measured when noisy image, median filter, Wiener filter and TV algorithm were applied to each phantom imaging. Experiments showed that when TV algorithms were applied, CNR and COV characteristics were excellent under all conditions. In conclusion, we've been able to see if we can use TV algorithm to improve image quality and CNR could be seen to increase due to the decrease in noise as the amount of increased mAs. On the other hand, COV decreased as the amount of increased mAs, and when kVp increased, noise was reduced and the transmittance was increased, so COV was reduced.

Robust Watermarking for Compressed Video Using Fingerprints and Its Applications

  • Jung, Soo-Yeun;Lee, Dong-Eun;Lee, Seong-Won;Paik, Joon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.794-799
    • /
    • 2008
  • This paper presents a user identification method at H.264 streaming using watermarking with fingerprints. The watermark can efficiently reduce the potential danger of forgery or alteration. Especially a biometric watermark has convenient, economical advantages. The fingerprint watermark can also improve reliability of verification using automated fingerprint identification systems. These algorithms, however, are not robust against common video compression. To overcome this problem, we analyze H.264 compression pattern and extract watermark after restoring damaged watermark using various filters. The proposed algorithm consists of enhancement of a fingerprint image, watermark insertion using discrete wavelet transform and extraction after restoring. The proposed algorithm can achieve robust watermark extraction against H.264 compressed videos.

Medical Applications of Near Infrared Spectroscopy and Diffuse Optical Imaging (Review) (근적외선 분광법 및 확산 광 영상법의 최근 연구 동향)

  • Lee, Seung-Duk;Kwon, Ki-Won;Koh, Dal-Kwon;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.89-98
    • /
    • 2008
  • NIRS (Near-infrared Spectroscopy) and DOI (Diffuse Optical Imaging) are relatively new, non-invasive, and non-ionizing methods that measure or image optical properties (Scattering and Absorption Coefficient) and physiological properties (Water Fraction, concentration of Oxy-, Deoxy-Hemoglobin, Cytochrome Oxidase, etc) of biological tissues. In this paper, three different types of NIRS systems, mathematical modeling, and reconstruction algorithms are described. Also, recent applications such as functional brain imaging, optical mammography, NIRS based BMI (Brain-Machine Interface), and small animal study are reviewed.

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Generating the Array of Elemental Image efficiently by using Look-Up Table in Integral Imaging System (집적영상 시스템에서 룩업테이블을 사용한 요소영상 배열의 효과적인 생성)

  • Kwon, Young-Man;Kim, Seung-Chul;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1068-1074
    • /
    • 2008
  • In this paper, we propose the algorithm for generating the array of elemental image by using look-up table (L UT) in a computer generated integral imaging system. It makes the LUT independently for the projection point of x and y. The algorithm using LUT to the existing ones needs less computing time to generate the array of elemental image. By comparing the computing time of proposed algorithm with that of the existing algorithms e xperimently, we proved the efficiency of proposed algorithm.

Medical Image Registration Methods for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법)

  • An, Jae-Bum;Lee, Sang-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.