• Title/Summary/Keyword: image-processing

Search Result 9,934, Processing Time 0.036 seconds

Development of an image processing algorithm for the recognition of car types and number plates (차종, 번호판 위치 및 자동차 번호판 인식을 위한 영상처리 알고리즘개발)

  • 김희식;이평원;김영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1718-1721
    • /
    • 1997
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. to recognize the type of cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the simularity mehod is used to recognize the numbers on plates.

  • PDF

A Design of Discrete Wavelet Transform Encoder for Multimedia Image Signal Processing (멀티미디어 영상신호 처리를 위한 DWT 부호화기 설계)

  • 이강현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1685-1688
    • /
    • 2003
  • The modem multimedia applications which are video Processor, video conference or video phone and so forth require real time processing. Because of a large amount of image data, those require high compression performance. In this paper, the proposed image processing encoder was designed by using wavelet transform encoding. The proposed filter block can process image data on tile high speed because of composing individual function blocks by parallel and compute both highpass and lowpass coefficient in the same clock cycle. When image data is decomposed into multiresolution, the proposed scheme needs external memory and controller to save intermediate results and it can operate within 33㎒.

  • PDF

Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.284-290
    • /
    • 2013
  • Feature detection is very important to image processing area. In this paper we compare and analyze some characteristics of image processing algorithms for corner and blob feature detection. We also analyze the simulation results through image matching process. We show that how these algorithms work and how fast they execute. The simulation results are shown for helping us to select an algorithm or several algorithms extracting corner and blob feature.

Wavelet-based Image Denoising with Optimal Filter

  • Lee, Yong-Hwan;Rhee, Sang-Burm
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.32-35
    • /
    • 2005
  • Image denoising is basic work for image processing, analysis and computer vision. This paper proposes a novel algorithm based on wavelet threshold for image denoising, which is combined with the linear CLS (Constrained Least Squares) filtering and thresholding methods in the transform domain. We demonstrated through simulations with images contaminated by white Gaussian noise that our scheme exhibits better performance in both PSNR (Peak Signal-to-Noise Ratio) and visual effect.

A Study on Binary Image Compression Using Morphological Skeleton (수리 형태학적 세선화를 이용한 이진 영상 압축)

  • 정기룡
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.3
    • /
    • pp.21-28
    • /
    • 1995
  • Mathematical morphology skeleton image processing makes many partial skeleton image planes from an original binary image. And the original binary image can be reconstructed without any distortion by summing the first partial skeleton image plane and each dilated partial skeleton image planes using the same structuring element. Especially compression effects of Elias coding to the morphological globally minimal skeleton(GMS) image, is better than that of PCX and Huffman coding. And then this paper proposes mathematical morphological GMS image processing which can be applied to a binary image transmitting for facimile and big size(bigger than $64{\times}64$ size) bitmap fonts storing in a memory.

  • PDF

Design and Implementation of Flaw Image processing System for Automated Ultrasonic Testing System (자동 초음파 검사를 위한 결함 영상 처리 시스템의 설계 및 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. Image processing algorithms are built into the flaw image processing system for the automated ultrasonic testing system. The developed signal and image analysis algorithms addressed in this study include an A-Scan data compression algorithm, ultrasonic image amplification algorithm and B-scan flaw image correction algorithm(SAFT). This flaw image processing system for the automated ultrasonic testing system can be applied to various inspection fields.

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and Visualization of Optical Coherence Tomography Images

  • Aum, Jaehong;Kim, Ji-hyun;Dong, Sunghee;Jeong, Jichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.453-459
    • /
    • 2018
  • We have developed a high-performance signal-processing and image-rendering heterogeneous computation system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing and image-visualization procedures. HIVA has been designed to maximize the computational performances of a mobile processor by using a native language compiler, which targets mobile processor, to directly access mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous computation. The developed mobile image processing platform requires only 25 ms to produce an OCT image from $512{\times}1024$ OCT data. This is 617 times faster than the naïve approach without HIVA, which requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate real-time mobile OCT image visualization. We believe this study would facilitate the development of portable diagnostic image visualization with medical imaging modality, which requires computationally expensive procedures, using a mobile processor.

Development of High-Speed Real-Time Image Signal Processing Unit for Small Infrared Image Tracking Radar (소형 적외선영상 호밍시스템용 고속 실시간 영상신호처리기 개발)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Jeon, Hyo-won;Shin, Jung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2021
  • A small infrared image homing system is a tracking system that has an infrared image sensor that identifies a target through the day and night infrared image processing of the target on the ground and searches for and detects the target with respect to the main target. This paper describes the development of a board equipped with a high-speed CPU and FPGA (Field Programmable Gate Array) to identify target through real-time image processing by acquiring target information through infrared image. We propose a CPU-FPGA combining architecture for CPU and FPGA selection and video signal processing, and also describe a controller design using FPGA to control infrared sensor.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

Image Superimposition for the Individual Identification Using Computer Vision System (컴퓨터 시각 인식 기법을 이용한 영상 중첩법에 의한 개인식별)

  • Ha-Jin Kim
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.1
    • /
    • pp.37-54
    • /
    • 1996
  • In this thesis, a new superimposition scheme using a computer vision system was proposed with 7 pairs of skull and ante-mortem photographs, which were already identified through other tests and DNA fingerprints at the Korea National Institute of Scientific Investigation. At this computer vision system, an unidentified skull was caught by video-camcoder with the MPEG and a ante-mortem photograph was scanned by scanner. These two images were processed and superimposed using pixel processing. Recognition of the individual identification by anatomical references was performed on the two superimposed images. These results were as followings. 1. For the enhancement of skull and ante-mortem photographs, various image processing schemes, such as SMOOTH, SHARPEN, EMBOSS, MOSAIC, ENGRAVE, INVERT, NEON and COLOR TO MONO, were applied using 3*5 window processing. As an image processing result of these methods, the optimal techniques were NEON, INVERT and ENGRAVE for the edge detection of skull and ante-mortem photograph. 2. Using various superimposition image processing techniques (SRCOR, SRCAND, SRCINVERT, SRCERASE, DSTINVERT, MERGEPAINT) were compared for the enhancement of image recognition. 3. By means of the video camera, the skull image was inputed directly to a computer system : superimposing it on the ante-mortem photograph made the identification more precise and time-saving. As mentioned above, this image processing techniques for the superimposition of skull and ante-mortem photographs simply used the previous approach, In other wrods, taking skull photographs and developing it to the same size as the ante-mortem photographs. This system using various image processing techniques on computer screen, a more precise and time-saving superimposition technique could be able to be applied in the area of individual identification in forensic practice.

  • PDF