• Title/Summary/Keyword: image-based

Search Result 17,992, Processing Time 0.04 seconds

A Novel Image Encryption Using Calligraphy Based Scan Method and Random Number

  • Sivakumar, T;Venkatesan, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2317-2337
    • /
    • 2015
  • Cryptography provides an effective solution to secure the communication over public networks. The communication over public networks that includes electronic commerce, business and military services, necessitates the requirement of simple and robust encryption techniques. In this paper, a novel image encryption method which employs calligraphy based hybrid scan and random number is presented. The original image is scrambled by pixel position permutation with calligraphy based diagonal and novel calligraphy based scan patterns. The cipher image is obtained by XORing the scrambled image with random numbers. The suggested method resists statistical, differential, entropy, and noise attacks which have been demonstrated with a set of standard images.

Multi GPU Based Image Registration for Cerebrovascular Extraction and Interactive Visualization (뇌혈관 추출과 대화형 가시화를 위한 다중 GPU기반 영상정합)

  • Park, Seong-Jin;Shin, Yeong-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.445-449
    • /
    • 2009
  • In this paper, we propose a computationally efficient multi GPU accelerated image registration technique to correct the motion difference between the pre-contrast CT image and post-contrast CTA image. Our method consists of two steps: multi GPU based image registration and a cerebrovascular visualization. At first, it computes a similarity measure considering the parallelism between both GPUs as well as the parallelism inside GPU for performing the voxel-based registration. Then, it subtracts a CT image transformed by optimal transformation matrix from CTA image, and visualizes the subtracted volume using GPU based volume rendering technique. In this paper, we compare our proposed method with existing methods using 5 pairs of pre-contrast brain CT image and post-contrast brain CTA image in order to prove the superiority of our method in regard to visual quality and computational time. Experimental results show that our method well visualizes a brain vessel, so it well diagnose a vessel disease. Our multi GPU based approach is 11.6 times faster than CPU based approach and 1.4 times faster than single GPU based approach for total processing.

Range Image Segmentation Based on Polynomial Function Approximation (다항식 함수 근사화에 근거한 거리 영상 분할)

  • 임영수;조택일;박규호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1448-1455
    • /
    • 1990
  • In this paper, a range image segmentation method is proposed. This method consists of an initial segmentation stage by discontinuous edge detection and surface type labeling based on the sign of the principal curvatures. Initially type labeled image is oversegmented, this image is merged via stepwise optimal region merging stage based on polynomial function approxiamtion. The successful segmentation results are presented for two synthetic range images with noise and a real-world ERIM range image.

  • PDF

Implementation of RTP based Image Transport System using JPEG2000 (RTP 기반의 JPEG2000 영상 전송 시스템 구현)

  • 박동진;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.355-358
    • /
    • 2002
  • In this paper, we propose RTP(Real-Time Transport Protocol) based image transport system to transport still images in real-time after JPEG2000 compression, which is still image compression standard for next generation. To add RTP packet on UDP packet, the image transport system inserts packetizer and depacketizer process into transmitter and receiver of RTP data, respectively. We apply the proposed system to several image and compare the transport time to TCP-based method.

  • PDF

Improvement of Content-based Image Retrieval by Considering Image Editing Effect (영상편집효과를 고려한 내용기반 영상 검색의 개선에 관한 연구)

  • Kang Seok-Jun;Bae Tae-Meon;Kim Ki-Hyun;Han Seung-Wan;Jeong Chi-Yoon;Nam Tae-Yong;Ro Yong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.564-575
    • /
    • 2006
  • With the rapid increase of the number of multimedia contents, people consume a lot of multimedia contents through various distribution channels. Content-based image retrieval uses visual features that represent the contents of images. And users can retrieve or filter images based on the contents of the images using the features. But, the editing of the multimedia contents distorts the original visual features of the multimedia contents, thereby the performance of content-based image retrieval system could be lowered. In this paper, we describe the image editing effects that lower the performance of the retrieval system and propose algorithms that can remove the image editing effect and improve content-based image retrieval system.

  • PDF

Design Of Intrusion Detection System Using Background Machine Learning

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.149-156
    • /
    • 2019
  • The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.

An Improved Interpolation Method using Pixel Difference Values for Effective Reversible Data Hiding (효과적인 가역 정보은닉을 위한 픽셀의 차이 값을 이용한 개선된 보간법)

  • Kim, Pyung Han;Jung, Ki Hyun;Yoon, Eun-Jun;Ryu, Kwan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.6
    • /
    • pp.768-788
    • /
    • 2021
  • The reversible data hiding technique safely transmits secret data to the recipient from malicious attacks by third parties. In addition, this technique can completely restore the image used as a transmission medium for secret data. The reversible data hiding schemes have been proposed in various forms, and recently, the reversible data hiding schemes based on interpolation are actively researching. The reversible data hiding scheme based on the interpolation method expands the original image into the cover image and embed secret data. However, the existing interpolation-based reversible data hiding schemes did not embed secret data during the interpolation process. To improve this problem, this paper proposes embedding the first secret data during the image interpolation process and embedding the second secret data into the interpolated cover image. In the embedding process, the original image is divided into blocks without duplicates, and the maximum and minimum values are determined within each block. Three way searching based on the maximum value and two way searching based on the minimum value are performed. And, image interpolation is performed while embedding the first secret data using the PVD scheme. A stego image is created by embedding the second secret data using the maximum difference value and log function in the interpolated cover image. As a result, the proposed scheme embeds secret data twice. In particular, it is possible to embed secret data even during the interpolation process of an image that did not previously embed secret data. Experimental results show that the proposed scheme can transmit more secret data to the receiver while maintaining the image quality similar to other interpolation-based reversible data hiding schemes.

Rotational Image Retrieval algorithm based on Wavelet Transform (웨이브렛 변환을 이용한 회전된 영상 검색 알고리즘)

  • 황도연;박정호;박민식;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.161-164
    • /
    • 2002
  • We propose a new method for rotational image retrieval that it is based on highly related property between a spatial image and wavelet transform. The characteristics have an important role in the design of our algorithm. Our proposed algorithm for rotational image retrieval is to obtain same image or rotated image. Because our algorithm used an rotational image retrieval.

  • PDF

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.